Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 294(11): 4160-4168, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30635400

RESUMO

Diabetes mellitus (DM) is an independent risk factor for atrial fibrillation, but the underlying ionic mechanism for this association remains unclear. We recently reported that expression of the small-conductance calcium-activated potassium channel 2 (SK2, encoded by KCCN2) in atria from diabetic mice is significantly down-regulated, resulting in reduced SK currents in atrial myocytes from these mice. We also reported that the level of SK2 mRNA expression is not reduced in DM atria but that the ubiquitin-proteasome system (UPS), a major mechanism of intracellular protein degradation, is activated in vascular smooth muscle cells in DM. This suggests a possible role of the UPS in reduced SK currents. To test this possibility, we examined the role of the UPS in atrial SK2 down-regulation in DM. We found that a muscle-specific E3 ligase, F-box protein 32 (FBXO-32, also called atrogin-1), was significantly up-regulated in diabetic mouse atria. Enhanced FBXO-32 expression in atrial cells significantly reduced SK2 protein expression, and siRNA-mediated FBXO-32 knockdown increased SK2 protein expression. Furthermore, co-transfection of SK2 with FBXO-32 complementary DNA in HEK293 cells significantly reduced SK2 expression, whereas co-transfection with atrogin-1ΔF complementary DNA (a nonfunctional FBXO-32 variant in which the F-box domain is deleted) did not have any effects on SK2. These results indicate that FBXO-32 contributes to SK2 down-regulation and that the F-box domain is essential for FBXO-32 function. In conclusion, DM-induced SK2 channel down-regulation appears to be due to an FBXO-32-dependent increase in UPS-mediated SK2 protein degradation.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Regulação para Baixo , Proteínas Musculares/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Camundongos , Proteínas Musculares/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Estreptozocina , Células Tumorais Cultivadas , Ubiquitina/metabolismo
2.
Proc Natl Acad Sci U S A ; 114(44): E9395-E9402, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29078406

RESUMO

Rett syndrome (RTT) is a debilitating neurological disorder caused by mutations in the gene encoding the transcription factor Methyl CpG Binding Protein 2 (MECP2). A distinct disorder results from MECP2 gene duplication, suggesting that therapeutic approaches must restore close to normal levels of MECP2. Here, we apply the approach of site-directed RNA editing to repair, at the mRNA level, a disease-causing guanosine to adenosine (G > A) mutation in the mouse MeCP2 DNA binding domain. To mediate repair, we exploit the catalytic domain of Adenosine Deaminase Acting on RNA (ADAR2) that deaminates A to inosine (I) residues that are subsequently translated as G. We fuse the ADAR2 domain, tagged with a nuclear localization signal, to an RNA binding peptide from bacteriophage lambda. In cultured neurons from mice that harbor an RTT patient G > A mutation and express engineered ADAR2, along with an appropriate RNA guide to target the enzyme, 72% of Mecp2 mRNA is repaired. Levels of MeCP2 protein are also increased significantly. Importantly, as in wild-type neurons, the repaired MeCP2 protein is enriched in heterochromatic foci, reflecting restoration of normal MeCP2 binding to methylated DNA. This successful use of site-directed RNA editing to repair an endogenous mRNA and restore protein function opens the door to future in vivo applications to treat RTT and other diseases.


Assuntos
Proteína 2 de Ligação a Metil-CpG/genética , Neurônios/fisiologia , RNA/genética , Adenosina Desaminase/genética , Animais , Células Cultivadas , Metilação de DNA/genética , Modelos Animais de Doenças , Humanos , Camundongos , Mutação/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Síndrome de Rett/genética
3.
Am J Physiol Heart Circ Physiol ; 310(9): H1151-63, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26945080

RESUMO

Activation of vascular endothelial small- (KCa2.3, SK3) or intermediate- (KCa3.1, IK1) conductance Ca(2+)-activated potassium channels induces vasorelaxation via an endothelium-derived hyperpolarization (EDH) pathway. Although the activation of SK3 and IK1 channels converges on EDH, their subcellular effects on signal transduction are different and not completely clear. In this study, a novel endothelium-specific SK3 knockout (SK3(-/-)) mouse model was utilized to specifically examine the contribution of SK3 channels to mesenteric artery vasorelaxation, endothelial Ca(2+) dynamics, and blood pressure. The absence of SK3 expression was confirmed using real-time quantitative PCR and Western blot analysis. Functional studies showed impaired EDH-mediated vasorelaxation in SK3(-/-) small mesenteric arteries. Immunostaining results from SK3(-/-) vessels confirmed the absence of SK3 and further showed altered distribution of transient receptor potential channels, type 4 (TRPV4). Electrophysiological recordings showed a lack of SK3 channel activity, while TRPV4-IK1 channel coupling remained intact in SK3(-/-) endothelial cells. Moreover, Ca(2+) imaging studies in SK3(-/-) endothelium showed increased Ca(2+) transients with reduced amplitude and duration under basal conditions. Importantly, SK3(-/-) endothelium lacked a distinct type of Ca(2+) dynamic that is sensitive to TRPV4 activation. Blood pressure measurements showed that the SK3(-/-) mice were hypertensive, and the blood pressure increase was further enhanced during the 12-h dark cycle when animals are most active. Taken together, our results reveal a previously unappreciated SK3 signaling microdomain that modulates endothelial Ca(2+) dynamics, vascular tone, and blood pressure.


Assuntos
Pressão Sanguínea , Sinalização do Cálcio , Cálcio/metabolismo , Células Endoteliais/metabolismo , Hipertensão/metabolismo , Microdomínios da Membrana/metabolismo , Artérias Mesentéricas/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Vasodilatação , Ciclos de Atividade , Animais , Predisposição Genética para Doença , Hipertensão/genética , Hipertensão/fisiopatologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Potenciais da Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/deficiência , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Canais de Cátion TRPV/metabolismo , Fatores de Tempo
4.
Proc Natl Acad Sci U S A ; 110(21): 8720-5, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23650376

RESUMO

The development of neural circuits relies on spontaneous electrical activity that occurs during immature stages of development. In the developing mammalian auditory system, spontaneous calcium action potentials are generated by inner hair cells (IHCs), which form the primary sensory synapse. It remains unknown whether this electrical activity is required for the functional maturation of the auditory system. We found that sensory-independent electrical activity controls synaptic maturation in IHCs. We used a mouse model in which the potassium channel SK2 is normally overexpressed, but can be modulated in vivo using doxycycline. SK2 overexpression affected the frequency and duration of spontaneous action potentials, which prevented the development of the Ca(2+)-sensitivity of vesicle fusion at IHC ribbon synapses, without affecting their morphology or general cell development. By manipulating the in vivo expression of SK2 channels, we identified the "critical period" during which spiking activity influences IHC synaptic maturation. Here we provide direct evidence that IHC development depends upon a specific temporal pattern of calcium spikes before sound-driven neuronal activity.


Assuntos
Potenciais de Ação/fisiologia , Cálcio/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Sinapses/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Doxiciclina/farmacologia , Células Ciliadas Auditivas Internas/citologia , Camundongos , Camundongos Transgênicos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Sinapses/genética
5.
Annu Rev Physiol ; 74: 245-69, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21942705

RESUMO

Small-conductance Ca(2+)-activated K(+) channels (SK channels) are widely expressed throughout the central nervous system. These channels are activated solely by increases in intracellular Ca(2+). SK channels are stable macromolecular complexes of the ion pore-forming subunits with calmodulin, which serves as the intrinsic Ca(2+) gating subunit, as well as with protein kinase CK2 and protein phosphatase 2A, which modulate Ca(2+) sensitivity. Well-known for their roles in regulating somatic excitability in central neurons, SK channels are also expressed in the postsynaptic membrane of glutamatergic synapses, where their activation and regulated trafficking modulate synaptic transmission and the induction and expression of synaptic plasticity, thereby affecting learning and memory. In this review we discuss the molecular and functional properties of SK channels and their physiological roles in central neurons.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Baixa/fisiologia , Animais , Cálcio/metabolismo , Cálcio/fisiologia , Humanos , Ativação do Canal Iônico/fisiologia , Aprendizagem/fisiologia , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Canais de Potássio Ativados por Cálcio de Condutância Baixa/ultraestrutura , Transmissão Sináptica/fisiologia
6.
J Neurosci ; 34(44): 14793-802, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25355231

RESUMO

Group I metabotropic glutamate (mGlu) receptors regulate hippocampal CA1 pyramidal neuron excitability via Ca(2+) wave-dependent activation of small-conductance Ca(2+)-activated K(+) (SK) channels. Here, we show that mGlu5 receptors and SK2 channels coassemble in heterologous coexpression systems and in rat brain. Further, in cotransfected cells or rat primary hippocampal neurons, mGlu5 receptor stimulation activated apamin-sensitive SK2-mediated K(+) currents. In addition, coexpression of mGlu5 receptors and SK2 channels promoted plasma membrane targeting of both proteins and correlated with increased mGlu5 receptor function that was unexpectedly blocked by apamin. These results demonstrate a reciprocal functional interaction between mGlu5 receptors and SK2 channels that reflects their molecular coassembly.


Assuntos
Hipocampo/metabolismo , Neurônios/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Animais , Apamina/farmacologia , Cálcio/metabolismo , Células HEK293 , Hipocampo/efeitos dos fármacos , Hipocampo/ultraestrutura , Humanos , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Ratos
7.
J Neurosci ; 33(41): 16158-69, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24107948

RESUMO

Premature and long-term ovarian hormone loss following ovariectomy (OVX) is associated with cognitive impairment. This condition is prevented by estradiol (E2) therapy when initiated shortly following OVX but not after substantial delay. To determine whether these clinical findings are correlated with changes in synaptic functions, we used adult OVX rats to evaluate the consequences of short-term (7-10 d, OVXControl) and long-term (∼5 months, OVXLT) ovarian hormone loss, as well as subsequent in vivo E2 treatment, on excitatory synaptic transmission at the hippocampal CA3-CA1 synapses important for learning and memory. The results show that ovarian hormone loss was associated with a marked decrease in synaptic strength. E2 treatment increased synaptic strength in OVXControl but not OVXLT rats, demonstrating a change in the efficacy for E2 5 months following OVX. E2 also had a more rapid effect: within minutes of bath application, E2 acutely increased synaptic strength in all groups except OVXLT rats that did not receive in vivo E2 treatment. E2's acute effect was mediated postsynaptically, and required Ca(2+) influx through the voltage-gated Ca(2+) channels. Despite E2's acute effect, synaptic strength of OVXLT rats remained significantly lower than that of OVXControl rats. Thus, changes in CA3-CA1 synaptic transmission associated with ovarian hormone loss cannot be fully reversed with delayed E2 treatment. Given that synaptic strength at CA3-CA1 synapses is related to the ability to learn hippocampus-dependent tasks, these findings provide additional insights for understanding cognitive impairment-associated long-term ovarian hormone loss and ineffectiveness for delayed E2 treatment to maintain cognitive functions.


Assuntos
Região CA1 Hipocampal/metabolismo , Região CA3 Hipocampal/metabolismo , Estradiol/deficiência , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Western Blotting , Estradiol/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Hormônios Esteroides Gonadais/deficiência , Hormônios Esteroides Gonadais/farmacologia , Ovariectomia , Técnicas de Patch-Clamp , Ratos , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
8.
Eur J Neurosci ; 39(6): 883-892, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24405447

RESUMO

Small-conductance, Ca(2+) -activated K(+) (SK) channels are expressed in the hippocampus where they regulate synaptic responses, plasticity, and learning and memory. To investigate the expression of SK3 (KCNN3) subunits, we determined the developmental profile and subcellular distribution of SK3 in the developing mouse hippocampus using western blots, immunohistochemistry and high-resolution immunoelectron microscopy. The results showed that SK3 expression increased during postnatal development, and that the localization of SK3 changed from being mainly associated with the endoplasmic reticulum and intracellular sites during the first postnatal week to being progressively concentrated in dendritic spines during later stages. In the adult, SK3 was localized mainly in postsynaptic compartments, both at extrasynaptic sites and along the postsynaptic density of excitatory synapses. Double labelling showed that SK3 co-localized with SK2 (KCNN2) and with N-methyl-D-aspartate receptors. Finally, quantitative analysis of SK3 density revealed two subcellular distribution patterns in different hippocampal layers, with SK3 being unevenly distributed in CA1 region of the hippocampus pyramidal cells and homogeneously distributed in dentate gyrus granule cells. Our results revealed a complex cell surface distribution of SK3-containing channels and a distinct developmental program that may influence different hippocampal functions.


Assuntos
Região CA1 Hipocampal/metabolismo , Densidade Pós-Sináptica/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Animais , Região CA1 Hipocampal/crescimento & desenvolvimento , Dendritos/metabolismo , Retículo Endoplasmático/metabolismo , Camundongos , Especificidade de Órgãos , Transporte Proteico , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética
9.
Nat Rev Neurosci ; 10(7): 475-80, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19543219

RESUMO

It was recently discovered that two different types of voltage-insensitive K+ channels, G protein-coupled inwardly rectifying K+ (GIRK) and small-conductance Ca2+-activated K+ (SK) channels, are located on dendritic branches, spines and shafts in the postsynaptic densities of excitatory synapses in many central neurons. Together with increases in our knowledge of how these channels are regulated through stable protein-protein interactions in multi-protein complexes, this has added another layer of complexity to our understanding of synaptic transmission and plasticity.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Neurônios/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Animais , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/química , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Complexos Multiproteicos/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/ultraestrutura , Conformação Proteica , Transdução de Sinais/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/química , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Transmissão Sináptica/fisiologia
10.
Proc Natl Acad Sci U S A ; 108(33): 13823-8, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21808016

RESUMO

Low-threshold (T-type) Ca(2+) channels encoded by the Ca(V)3 genes endow neurons with oscillatory properties that underlie slow waves characteristic of the non-rapid eye movement (NREM) sleep EEG. Three Ca(V)3 channel subtypes are expressed in the thalamocortical (TC) system, but their respective roles for the sleep EEG are unclear. Ca(V)3.3 protein is expressed abundantly in the nucleus reticularis thalami (nRt), an essential oscillatory burst generator. We report the characterization of a transgenic Ca(V)3.3(-/-) mouse line and demonstrate that Ca(V)3.3 channels are indispensable for nRt function and for sleep spindles, a hallmark of natural sleep. The absence of Ca(V)3.3 channels prevented oscillatory bursting in the low-frequency (4-10 Hz) range in nRt cells but spared tonic discharge. In contrast, adjacent TC neurons expressing Ca(V)3.1 channels retained low-threshold bursts. Nevertheless, the generation of synchronized thalamic network oscillations underlying sleep-spindle waves was weakened markedly because of the reduced inhibition of TC neurons via nRt cells. T currents in Ca(V)3.3(-/-) mice were <30% compared with those in WT mice, and the remaining current, carried by Ca(V)3.2 channels, generated dendritic [Ca(2+)](i) signals insufficient to provoke oscillatory bursting that arises from interplay with Ca(2+)-dependent small conductance-type 2 K(+) channels. Finally, naturally sleeping Ca(V)3.3(-/-) mice showed a selective reduction in the power density of the σ frequency band (10-12 Hz) at transitions from NREM to REM sleep, with other EEG waves remaining unaltered. Together, these data identify a central role for Ca(V)3.3 channels in the rhythmogenic properties of the sleep-spindle generator and provide a molecular target to elucidate the roles of sleep spindles for brain function and development.


Assuntos
Canais de Cálcio Tipo T/fisiologia , Sono/fisiologia , Tálamo/fisiologia , Animais , Ondas Encefálicas , Sinalização do Cálcio , Eletroencefalografia , Camundongos , Camundongos Knockout , Neurônios/fisiologia , Sono REM
11.
J Neurosci ; 32(40): 13917-28, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23035101

RESUMO

Sleep spindles are synchronized 11-15 Hz electroencephalographic (EEG) oscillations predominant during nonrapid-eye-movement sleep (NREMS). Rhythmic bursting in the reticular thalamic nucleus (nRt), arising from interplay between Ca(v)3.3-type Ca(2+) channels and Ca(2+)-dependent small-conductance-type 2 (SK2) K(+) channels, underlies spindle generation. Correlative evidence indicates that spindles contribute to memory consolidation and protection against environmental noise in human NREMS. Here, we describe a molecular mechanism through which spindle power is selectively extended and we probed the actions of intensified spindling in the naturally sleeping mouse. Using electrophysiological recordings in acute brain slices from SK2 channel-overexpressing (SK2-OE) mice, we found that nRt bursting was potentiated and thalamic circuit oscillations were prolonged. Moreover, nRt cells showed greater resilience to transit from burst to tonic discharge in response to gradual depolarization, mimicking transitions out of NREMS. Compared with wild-type littermates, chronic EEG recordings of SK2-OE mice contained less fragmented NREMS, while the NREMS EEG power spectrum was conserved. Furthermore, EEG spindle activity was prolonged at NREMS exit. Finally, when exposed to white noise, SK2-OE mice needed stronger stimuli to arouse. Increased nRt bursting thus strengthens spindles and improves sleep quality through mechanisms independent of EEG slow waves (<4 Hz), suggesting SK2 signaling as a new potential therapeutic target for sleep disorders and for neuropsychiatric diseases accompanied by weakened sleep spindles.


Assuntos
Nível de Alerta/fisiologia , Fases do Sono/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/fisiologia , Núcleos Talâmicos/fisiologia , Potenciais de Ação , Animais , Limiar Auditivo , Células Cultivadas/fisiologia , Eletroencefalografia , Feminino , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Polissonografia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/biossíntese , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Organismos Livres de Patógenos Específicos , Núcleos Talâmicos/citologia , Regulação para Cima
12.
J Neurosci ; 31(7): 2638-48, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21325532

RESUMO

Premature and uncompensated loss of ovarian hormones following ovariectomy (OVX) elevates the risks of cognitive impairment and dementia. These risks are prevented with estrogen (E(2))-containing hormone replacement therapy initiated shortly following OVX but not after substantial delay. Currently, the cellular bases underlying these clinical findings are unknown. At the cellular level, intrinsic membrane properties regulate the efficiency of synaptic inputs to initiate output action potentials (APs), thereby affecting neuronal communication, hence cognitive processing. This study tested the hypothesis that in CA1 pyramidal neurons, intrinsic membrane properties and their acute regulation by E(2) require ovarian hormones for maintenance. Whole-cell current-clamp recordings were performed on neurons from ∼ 7-month-old OVX rats that experienced either short-term (10 d, control OVX) or long-term (5 months, OVX(LT)) ovarian hormone deficiency. The results reveal that long-term hormone deficiency reduced intrinsic membrane excitability (IE) as measured by the number of evoked APs and firing duration for a given current injection. This was accompanied by AP broadening, an increased slow afterhyperpolarization (sAHP), and faster accumulation of Na(V) channel inactivation during repetitive firing. In the control OVX neurons, E(2) acutely increased IE and reduced the sAHP. In contrast, acute regulation of IE by E(2) was absent in the OVX(LT) neurons. Since the degree of IE of hippocampal pyramidal neurons is positively related with hippocampus-dependent learning ability, and modulation of IE is observed following successful learning, these findings provide a framework for understanding hormone deficiency-related cognitive impairment and the critical window for therapy initiation.


Assuntos
Estrogênios/deficiência , Estrogênios/farmacologia , Hipocampo/citologia , Neurônios/efeitos dos fármacos , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Potenciais de Ação/efeitos dos fármacos , Análise de Variância , Animais , Biofísica , Estimulação Elétrica/métodos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Antagonistas GABAérgicos/farmacologia , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Ovariectomia , Técnicas de Patch-Clamp/métodos , Ácidos Fosfínicos/farmacologia , Propanolaminas/farmacologia , Piridazinas/farmacologia , Ratos , Fatores de Tempo , Valina/análogos & derivados , Valina/farmacologia
13.
Am J Physiol Cell Physiol ; 303(3): C318-27, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22621787

RESUMO

Small- and intermediate-conductance Ca(2+)-activated K(+) channels (SK3/Kcnn3 and IK1/Kcnn4) are expressed in vascular endothelium. Their activities play important roles in regulating vascular tone through their modulation of intracellular concentration ([Ca(2+)](i)) required for the production of endothelium-derived vasoactive agents. Activation of endothelial IK1 or SK3 channels hyperpolarizes endothelial cell membrane potential, increases Ca(2+) influx, and leads to the release of vasoactive factors, thereby impacting blood pressure. To examine the distinct roles of IK1 and SK3 channels, we used electrophysiological recordings to investigate IK1 and SK3 channel trafficking in acutely dissociated endothelial cells from mouse aorta. The results show that SK3 channels undergo Ca(2+)-dependent cycling between the plasma membrane and intracellular organelles; disrupting Ca(2+)-dependent endothelial caveolae cycling abolishes SK3 channel trafficking. Moreover, transmitter-induced changes in SK3 channel activity and surface expression modulate endothelial membrane potential. In contrast, IK1 channels do not undergo rapid trafficking and their activity remains unchanged when either exo- or endocytosis is block. Thus modulation of SK3 surface expression may play an important role in regulating endothelial membrane potential in a Ca(2+)-dependent manner.


Assuntos
Cálcio/metabolismo , Cavéolas/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Animais , Aorta/metabolismo , Aorta/fisiologia , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Transporte Proteico
14.
J Neurophysiol ; 108(3): 863-70, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22552186

RESUMO

Enhanced intrinsic neuronal excitability of hippocampal pyramidal neurons via reductions in the postburst afterhyperpolarization (AHP) has been hypothesized to be a biomarker of successful learning. This is supported by considerable evidence that pharmacologic enhancement of neuronal excitability facilitates learning. However, it has yet to be demonstrated that pharmacologic reduction of neuronal excitability restricted to the hippocampus can retard acquisition of a hippocampus-dependent task. Thus, the present study was designed to address this latter point using a small conductance potassium (SK) channel activator NS309 focally applied to the dorsal hippocampus. SK channels are important contributors to intrinsic excitability, as measured by the medium postburst AHP. NS309 increased the medium AHP and reduced excitatory postsynaptic potential width of CA1 neurons in vitro. In vivo, NS309 reduced the spontaneous firing rate of CA1 pyramidal neurons and impaired trace eyeblink conditioning in rats. Conversely, trace eyeblink conditioning reduced levels of SK2 channel mRNA and protein in the hippocampus. Therefore, the present findings indicate that modulation of SK channels is an important cellular mechanism for associative learning and further support postburst AHP reductions in hippocampal pyramidal neurons as a biomarker of successful learning.


Assuntos
Aprendizagem por Associação/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/biossíntese , Animais , Aprendizagem por Associação/efeitos dos fármacos , Piscadela/efeitos dos fármacos , Piscadela/fisiologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologia , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Indóis/farmacologia , Masculino , Oximas/farmacologia , Ratos , Ratos Endogâmicos F344 , Canais de Potássio Ativados por Cálcio de Condutância Baixa/agonistas
15.
Hippocampus ; 22(6): 1467-80, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22072564

RESUMO

We investigated the temporal and spatial expression of SK2 in the developing mouse hippocampus using molecular and biochemical techniques, quantitative immunogold electron microscopy, and electrophysiology. The mRNA encoding SK2 was expressed in the developing and adult hippocampus. Western blotting and immunohistochemistry showed that SK2 protein increased with age. This was accompanied by a shift in subcellular localization. Early in development (P5), SK2 was predominantly localized to the endoplasmic reticulum in the pyramidal cell layer. But by P30 SK2 was almost exclusively expressed in the dendrites and spines. The level of SK2 at the postsynaptic density (PSD) also increased during development. In the adult, SK2 expression on the spine plasma membrane showed a proximal-to-distal gradient. Consistent with this redistribution and gradient of SK2, the selective SK channel blocker apamin increased evoked excitatory postsynaptic potentials (EPSPs) only in CA1 pyramidal neurons from mice older than P15. However, the effect of apamin on EPSPs was not different between synapses in proximal or distal stratum radiatum or stratum lacunosum-moleculare in adult. These results show a developmental increase and gradient in SK2-containing channel surface expression that underlie their influence on neurotransmission, and that may contribute to increased memory acquisition during early development.


Assuntos
Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA1 Hipocampal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Canais de Potássio Ativados por Cálcio de Condutância Baixa/biossíntese , Animais , Animais Recém-Nascidos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sinapses/fisiologia
16.
Nat Neurosci ; 11(2): 170-7, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18204442

RESUMO

Long-term potentiation (LTP) of synaptic strength at Schaffer collateral synapses has largely been attributed to changes in the number and biophysical properties of AMPA receptors (AMPARs). Small-conductance Ca(2+)-activated K(+) channels (SK2 channels) are functionally coupled with NMDA receptors (NMDARs) in CA1 spines such that their activity modulates the shape of excitatory postsynaptic potentials (EPSPs) and increases the threshold for induction of LTP. Here we show that LTP induction in mouse hippocampus abolishes SK2 channel activity in the potentiated synapses. This effect is due to SK2 channel internalization from the postsynaptic density (PSD) into the spine. Blocking PKA or cell dialysis with a peptide representing the C-terminal domain of SK2 that contains three known PKA phosphorylation sites blocks the internalization of SK2 channels after LTP induction. Thus the increase in AMPARs and the decrease in SK2 channels combine to produce the increased EPSP underlying LTP.


Assuntos
Hipocampo/citologia , Potenciação de Longa Duração/fisiologia , Fibras Nervosas/fisiologia , Plasticidade Neuronal/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Sinapses/fisiologia , 2-Amino-5-fosfonovalerato/farmacologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Análise de Variância , Animais , Proteína 4 Homóloga a Disks-Large , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas GABAérgicos/farmacologia , Guanilato Quinases , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/efeitos da radiação , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Imunoeletrônica/métodos , Fibras Nervosas/ultraestrutura , Plasticidade Neuronal/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Ácidos Fosfínicos/farmacologia , Propanolaminas/farmacologia , Piridazinas/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/ultraestrutura , Sinapses/efeitos dos fármacos , Sinapses/ultraestrutura , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos da radiação
17.
Nat Neurosci ; 11(6): 683-92, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18488023

RESUMO

T-type Ca2+ channels (T channels) underlie rhythmic burst discharges during neuronal oscillations that are typical during sleep. However, the Ca2+-dependent effectors that are selectively regulated by T currents remain unknown. We found that, in dendrites of nucleus reticularis thalami (nRt), intracellular Ca2+ concentration increases were dominated by Ca2+ influx through T channels and shaped rhythmic bursting via competition between Ca2+-dependent small-conductance (SK)-type K+ channels and Ca2+ uptake pumps. Oscillatory bursting was initiated via selective activation of dendritically located SK2 channels, whereas Ca2+ sequestration by sarco/endoplasmic reticulum Ca2+-ATPases (SERCAs) and cumulative T channel inactivation dampened oscillations. Sk2-/- (also known as Kcnn2) mice lacked cellular oscillations, showed a greater than threefold reduction in low-frequency rhythms in the electroencephalogram of non-rapid-eye-movement sleep and had disrupted sleep. Thus, the interplay of T channels, SK2 channels and SERCAs in nRt dendrites comprises a specialized Ca2+ signaling triad to regulate oscillatory dynamics related to sleep.


Assuntos
Relógios Biológicos/fisiologia , Dendritos/fisiologia , Núcleos da Linha Média do Tálamo/citologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/fisiologia , Sono/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/fisiologia , Anestésicos Locais/farmacologia , Animais , Animais Recém-Nascidos , Apamina/farmacologia , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Dendritos/ultraestrutura , Estimulação Elétrica/métodos , Eletroencefalografia/métodos , Inibidores Enzimáticos/farmacologia , Feminino , Técnicas In Vitro , Indóis/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Mibefradil/farmacologia , Camundongos , Camundongos Knockout , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/efeitos da radiação , Técnicas de Patch-Clamp , Canais de Potássio Ativados por Cálcio de Condutância Baixa/deficiência , Tetrodotoxina/farmacologia , Caminhada/fisiologia
18.
J Neurosci ; 30(35): 11726-34, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20810893

RESUMO

Small conductance Ca(2+)-activated K(+) type 2 (SK2) channels are expressed in the postsynaptic density of CA1 neurons where they are activated by synaptically evoked Ca(2+) influx to limit the size of EPSPs and spine Ca(2+) transients. At Schaffer collateral synapses, the induction of long-term potentiation (LTP) increases the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR)-mediated contribution to synaptic transmission and decreases the synaptic SK2 channel contribution through protein kinase A-dependent channel endocytosis. Using a combination of electrophysiology and immunoelectron microscopy in mice, the relationship between the dynamics of spine SK2 channels and AMPARs was investigated. Unlike AMPARs, synaptic SK2 channels under basal conditions do not rapidly recycle. Furthermore, SK2 channels occupy a distinct population of endosomes separate from AMPARs. However, blocking vesicular exocytosis or the delivery of synaptic GluA1-containing AMPARs during the induction of LTP blocks SK2 channel endocytosis. By approximately 2 h after the induction of LTP, synaptic SK2 channel expression and function are restored. Thus, LTP-dependent endocytosis of SK2 is coupled to LTP-dependent AMPA exocytosis, and the approximately 2 h window after the induction of LTP during which synaptic SK2 activity is absent may be important for consolidating the later phases of LTP.


Assuntos
Receptores de AMPA/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Sinapses/metabolismo , Animais , Endocitose/fisiologia , Endossomos/química , Endossomos/metabolismo , Endossomos/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Hipocampo/química , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transporte Proteico/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/fisiologia , Sinapses/química , Sinapses/fisiologia , Potenciais Sinápticos/fisiologia
19.
J Neurophysiol ; 106(1): 488-96, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21525363

RESUMO

Currently available optogenetic tools, including microbial light-activated ion channels and transporters, are transforming systems neuroscience by enabling precise remote control of neuronal firing, but they tell us little about the role of indigenous ion channels in controlling neuronal function. Here, we employ a chemical-genetic strategy to engineer light sensitivity into several mammalian K(+) channels that have different gating and modulation properties. These channels provide the means for photoregulating diverse electrophysiological functions. Photosensitivity is conferred on a channel by a tethered ligand photoswitch that contains a cysteine-reactive maleimide (M), a photoisomerizable azobenzene (A), and a quaternary ammonium (Q), a K(+) channel pore blocker. Using mutagenesis, we identify the optimal extracellular cysteine attachment site where MAQ conjugation results in pore blockade when the azobenzene moiety is in the trans but not cis configuration. With this strategy, we have conferred photosensitivity on channels containing Kv1.3 subunits (which control axonal action potential repolarization), Kv3.1 subunits (which contribute to rapid-firing properties of brain neurons), Kv7.2 subunits (which underlie "M-current"), and SK2 subunits (which are Ca(2+)-activated K(+) channels that contribute to synaptic responses). These light-regulated channels may be overexpressed in genetically targeted neurons or substituted for native channels with gene knockin technology to enable precise optopharmacological manipulation of channel function.


Assuntos
Canal de Potássio KCNQ2/química , Canal de Potássio Kv1.3/química , Neurônios/química , Processos Fotoquímicos , Canais de Potássio Cálcio-Ativados/química , Engenharia de Proteínas , Sequência de Aminoácidos , Compostos Azo/química , Células HEK293 , Humanos , Ativação do Canal Iônico , Canal de Potássio KCNQ2/genética , Canal de Potássio Kv1.3/genética , Maleimidas/química , Dados de Sequência Molecular , Compostos de Amônio Quaternário/química
20.
Circulation ; 119(17): 2323-32, 2009 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-19380617

RESUMO

BACKGROUND: It has been proposed that activation of endothelial SK3 (K(Ca)2.3) and IK1 (K(Ca)3.1) K+ channels plays a role in the arteriolar dilation attributed to an endothelium-derived hyperpolarizing factor (EDHF). However, our understanding of the precise function of SK3 and IK1 in the EDHF dilator response and in blood pressure control remains incomplete. To clarify the roles of SK3 and IK1 channels in the EDHF dilator response and their contribution to blood pressure control in vivo, we generated mice deficient for both channels. METHODS AND RESULTS: Expression and function of endothelial SK3 and IK1 in IK1(-/-)/SK3(T/T) mice was characterized by patch-clamp, membrane potential measurements, pressure myography, and intravital microscopy. Blood pressure was measured in conscious mice by telemetry. Combined IK1/SK3 deficiency in IK1(-/-)/SK3(T/T) (+doxycycline) mice abolished endothelial K(Ca) currents and impaired acetylcholine-induced smooth muscle hyperpolarization and EDHF-mediated dilation in conduit arteries and in resistance arterioles in vivo. IK1 deficiency had a severe impact on acetylcholine-induced EDHF-mediated vasodilation, whereas SK3 deficiency impaired NO-mediated dilation to acetylcholine and to shear stress stimulation. As a consequence, SK3/IK1-deficient mice exhibited an elevated arterial blood pressure, which was most prominent during physical activity. Overexpression of SK3 in IK1(-/-)/SK3(T/T) mice partially restored EDHF- and nitric oxide-mediated vasodilation and lowered elevated blood pressure. The IK1-opener SKA-31 enhanced EDHF-mediated vasodilation and lowered blood pressure in SK3-deficient IK1(+/+)/SK3(T/T) (+doxycycline) mice to normotensive levels. CONCLUSIONS: Our study demonstrates that endothelial SK3 and IK1 channels have distinct stimulus-dependent functions, are major players in the EDHF pathway, and significantly contribute to arterial blood pressure regulation. Endothelial K(Ca) channels may represent novel therapeutic targets for the treatment of hypertension.


Assuntos
Fatores Biológicos/fisiologia , Hipertensão/etiologia , Vasodilatação , Animais , Fatores Biológicos/metabolismo , Pressão Sanguínea/fisiologia , Cálcio/metabolismo , Potenciais da Membrana , Camundongos , Camundongos Knockout , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/fisiologia , Canais de Potássio Shaw/deficiência , Canais de Potássio Ativados por Cálcio de Condutância Baixa/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA