RESUMO
The novel Coronavirus Disease 2019 (COVID-19) remains a worldwide threat to community health, social stability, and economic development. Since the first case was recorded on December 29, 2019, in Wuhan of China, the disease has rapidly extended to other nations of the world to claim many lives, especially in the USA, the United Kingdom, and Western Europe. To stay ahead of the curve consequent of the continued increase in case and mortality, predictive tools are needed to guide adequate response. Therefore, this study aims to determine the best predictive models and investigate the impact of lockdown policy on the USA' COVID-19 incidence and mortality. This study focuses on the statistical modelling of the USA daily COVID-19 incidence and mortality cases based on some intuitive properties of the data such as overdispersion and autoregressive conditional heteroscedasticity. The impact of the lockdown policy on cases and mortality was assessed by comparing the USA incidence case with that of Sweden where there is no strict lockdown. Stochastic models based on negative binomial autoregressive conditional heteroscedasticity [NB INGARCH (p,q)], the negative binomial regression, the autoregressive integrated moving average model with exogenous variables (ARIMAX) and without exogenous variables (ARIMA) models of several orders are presented, to identify the best fitting model for the USA daily incidence cases. The performance of the optimal NB INGARCH model on daily incidence cases was compared with the optimal ARIMA model in terms of their Akaike Information Criteria (AIC). Also, the NB model, ARIMA model and without exogenous variables are formulated for USA daily COVID-19 death cases. It was observed that the incidence and mortality cases show statistically significant increasing trends over the study period. The USA daily COVID-19 incidence is autocorrelated, linear and contains a structural break but exhibits autoregressive conditional heteroscedasticity. Observed data are compared with the fitted data from the optimal models. The results further indicate that the NB INGARCH fits the observed incidence better than ARIMA while the NB models perform better than the optimal ARIMA and ARIMAX models for death counts in terms of AIC and root mean square error (RMSE). The results show a statistically significant relationship between the lockdown policy in the USA and incidence and death counts. This suggests the efficacy of the lockdown policy in the USA.
Assuntos
COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Previsões , Modelos Teóricos , COVID-19/mortalidade , Humanos , Incidência , SARS-CoV-2 , Estados Unidos/epidemiologiaRESUMO
Recent studies have considered the connections between malaria incidence and climate variables using mathematical and statistical models. Some of the statistical models focused on time series approach based on Box-Jenkins methodology or on dynamic model. The latter approach allows for covariates different from its original lagged values, while the Box-Jenkins does not. In real situations, malaria incidence counts may turn up with many zero terms in the time series. Fitting time series model based on the Box-Jenkins approach and ARIMA may be spurious. In this study, a zero-inflated negative binomial regression model was formulated for fitting malaria incidence in Mopani and Vhembe-two of the epidemic district municipalities in Limpopo, South Africa. In particular, a zero-inflated negative binomial regression model was formulated for daily malaria counts as a function of some climate variables, with the aim of identifying the model that best predicts reported malaria cases. Results from this study show that daily rainfall amount and the average temperature at various lags have a significant influence on malaria incidence in the study areas. The significance of zero inflation on the malaria count was examined using the Vuong test and the result shows that zero-inflated negative binomial regression model fits the data better. A dynamical climate-based model was further used to investigate the population dynamics of mosquitoes over the two regions. Findings highlight the significant roles of Anopheles arabiensis on malaria transmission over the regions and suggest that vector control activities should be intense to eradicate malaria in Mopani and Vhembe districts. Although An. arabiensis has been identified as the major vector over these regions, our findings further suggest the presence of additional vectors transmitting malaria in the study regions. The findings from this study offer insight into climate-malaria incidence linkages over Limpopo province of South Africa.
Assuntos
Malária/epidemiologia , Animais , Anopheles , Humanos , Incidência , Malária/transmissão , Modelos Estatísticos , Mosquitos Vetores , Chuva , Análise de Regressão , África do Sul/epidemiologia , TemperaturaRESUMO
The recent resurgence of malaria incidence across epidemic regions in South Africa has been linked to climatic and environmental factors. An in-depth investigation of the impact of climate variability and mosquito abundance on malaria parasite incidence may therefore offer useful insight towards the control of this life-threatening disease. In this study, we investigate the influence of climatic factors on malaria transmission over Nkomazi Municipality. The variability and interconnectedness between the variables were analyzed using wavelet coherence analysis. Time-series analyses revealed that malaria cases significantly declined after the outbreak in early 2000, but with a slight increase from 2015. Furthermore, the wavelet coherence and time-lagged correlation analyses identified rainfall and abundance of Anopheles arabiensis as the major variables responsible for malaria transmission over the study region. The analysis further highlights a high malaria intensity with the variables from 1998-2002, 2004-2006, and 2010-2013 and a noticeable periodicity value of 256-512 days. Also, malaria transmission shows a time lag between one month and three months with respect to mosquito abundance and the different climatic variables. The findings from this study offer a better understanding of the importance of climatic factors on the transmission of malaria. The study further highlights the significant roles of An. arabiensis on malaria occurrence over Nkomazi. Implementing the mosquito model to predict mosquito abundance could provide more insight into malaria elimination or control in Africa.
Assuntos
Anopheles/fisiologia , Clima , Malária/transmissão , Mosquitos Vetores/fisiologia , Tempo (Meteorologia) , Animais , Densidade Demográfica , África do SulRESUMO
The north-eastern parts of South Africa, comprising the Limpopo Province, have recorded a sudden rise in the rate of malaria morbidity and mortality in the 2017 malaria season. The epidemiological profiles of malaria, as well as other vector-borne diseases, are strongly associated with climate and environmental conditions. A retrospective understanding of the relationship between climate and the occurrence of malaria may provide insight into the dynamics of the disease's transmission and its persistence in the north-eastern region. In this paper, the association between climatic variables and the occurrence of malaria was studied in the Mutale local municipality in South Africa over a period of 19-year. Time series analysis was conducted on monthly climatic variables and monthly malaria cases in the Mutale municipality for the period of 1998-2017. Spearman correlation analysis was performed and the Seasonal Autoregressive Integrated Moving Average (SARIMA) model was developed. Microsoft Excel was used for data cleaning, and statistical software R was used to analyse the data and develop the model. Results show that both climatic variables' and malaria cases' time series exhibited seasonal patterns, showing a number of peaks and fluctuations. Spearman correlation analysis indicated that monthly total rainfall, mean minimum temperature, mean maximum temperature, mean average temperature, and mean relative humidity were significantly and positively correlated with monthly malaria cases in the study area. Regression analysis showed that monthly total rainfall and monthly mean minimum temperature (R² = 0.65), at a two-month lagged effect, are the most significant climatic predictors of malaria transmission in Mutale local municipality. A SARIMA (2,1,2) (1,1,1) model fitted with only malaria cases has a prediction performance of about 51%, and the SARIMAX (2,1,2) (1,1,1) model with climatic variables as exogenous factors has a prediction performance of about 72% in malaria cases. The model gives a close comparison between the predicted and observed number of malaria cases, hence indicating that the model provides an acceptable fit to predict the number of malaria cases in the municipality. To sum up, the association between the climatic variables and malaria cases provides clues to better understand the dynamics of malaria transmission. The lagged effect detected in this study can help in adequate planning for malaria intervention.