Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(45): 18081-6, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24145444

RESUMO

Carbonaceous presolar grains of supernovae origin have long been isolated and are determined to be the carrier of anomalous (22)Ne in ancient meteorites. That exotic (22)Ne is, in fact, the decay isotope of relatively short-lived (22)Na formed by explosive nucleosynthesis, and therefore, a selective and rapid Na physical trapping mechanism must take place during carbon condensation in supernova ejecta. Elucidation of the processes that trap Na and produce large carbon molecules should yield insight into carbon stardust enrichment and formation. Herein, we demonstrate that Na effectively nucleates formation of Na@C60 and other metallofullerenes during carbon condensation under highly energetic conditions in oxygen- and hydrogen-rich environments. Thus, fundamental carbon chemistry that leads to trapping of Na is revealed, and should be directly applicable to gas-phase chemistry involving stellar environments, such as supernova ejecta. The results indicate that, in addition to empty fullerenes, metallofullerenes should be constituents of stellar/circumstellar and interstellar space. In addition, gas-phase reactions of fullerenes with polycyclic aromatic hydrocarbons are investigated to probe "build-up" and formation of carbon stardust, and provide insight into fullerene astrochemistry.


Assuntos
Carbono/química , Fulerenos/química , Modelos Químicos , Compostos Organometálicos/química , Astros Celestes/química , Análise de Fourier , Espectrometria de Massas , Hidrocarbonetos Policíclicos Aromáticos/química
2.
Beilstein J Nanotechnol ; 9: 2750-2762, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416926

RESUMO

Single-walled carbon nanotubes (SWCNTs) were functionalized by ferrocene through ethyleneglycol chains of different lengths (FcETGn) and the functionalized SWCNTs (f-SWCNTs) were characterized by different complementary analytical techniques. In particular, high-resolution scanning electron transmission microscopy (HRSTEM) and electron energy loss spectroscopy (EELS) analyses support that the outer tubes of the carbon-nanotube bundles were covalently grafted with FcETGn groups. This result confirms that the electrocatalytic effect observed during the oxidation of the reduced form of nicotinamide adenine dinucleotide (NADH) co-factor by the f-SWCNTs is due to the presence of grafted ferrocene derivatives playing the role of a mediator. This work clearly proves that residual impurities present in our SWCNT sample (below 5 wt. %) play no role in the electrocatalytic oxidation of NADH. Moreover, molecular dynamic simulations confirm the essential role of the PEG linker in the efficiency of the bioelectrochemical device in water, due to the favorable interaction between the ETG units and water molecules that prevents π-stacking of the ferrocene unit on the surface of the CNTs. This system can be applied to biosensing, as exemplified for glucose detection. The well-controlled and well-characterized functionalization of essentially clean SWCNTs enabled us to establish the maximum level of impurity content, below which the f-SWCNT intrinsic electrochemical activity is not jeopardized.

3.
Philos Trans A Math Phys Eng Sci ; 374(2076)2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27501975

RESUMO

We calculate the infrared (IR) absorption spectra using DFT B3LYP(6-311G) for a range of small closed-cage fullerenes, Cn, n=20, 24, 26, 28, 30 and 60, in both neutral and multiple positive and negative charge states. The results are of use, notably, for direct comparison with observed IR absorption in the interstellar medium. Frequencies fall typically into two ranges, with C-C stretch modes around 1100-1500 cm(-1) (6.7-9.1 µm) and fullerene-specific radial motion associated with under-coordinated carbon at pentagonal sites in the range 600-800 cm(-1) (12.5-16.7 µm). Notably, negatively charged fullerenes show significantly stronger absorption intensities than neutral species. The results suggest that small cage fullerenes, and notably metallic endofullerenes, may be responsible for many of the unassigned interstellar IR spectral lines.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'.

4.
Nanoscale ; 8(3): 1642-51, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26692370

RESUMO

Two-dimensional (2D) conjugated polymers exhibit electronic structures analogous to that of graphene with the peculiarity of π-π* bands which are fully symmetric and isolated. In the present letter, the suitability of these materials for electronic applications is analyzed and discussed. In particular, realistic 2D conjugated polymer networks with a structural disorder such as monomer vacancies are investigated. Indeed, during bottom-up synthesis, these irregularities are unavoidable and their impact on the electronic properties is investigated using both ab initio and tight-binding techniques. The tight-binding model is combined with a real space Kubo-Greenwood approach for the prediction of transport characteristics for monomer vacancy concentrations ranging from 0.5% to 2%. As expected, long mean free paths and high mobilities are predicted for low defect densities. At low temperatures and for high defect densities, strong localization phenomena originating from quantum interferences of multiple scattering paths are observed in the close vicinity of the Dirac energy region while the absence of localization effects is predicted away from this region suggesting a sharp mobility transition. These predictions show that 2D conjugated polymer networks are good candidates to pave the way for the ultimate scaling and performances of future molecular nanoelectronic devices.

5.
Nat Commun ; 5: 5842, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25519052

RESUMO

Linear electronic band dispersion and the associated Dirac physics has to date been limited to special-case materials, notably graphene and the surfaces of three-dimensional (3D) topological insulators. Here we report that it is possible to create two-dimensional fully conjugated polymer networks with corresponding conical valence and conduction bands and linear energy dispersion at the Fermi level. This is possible for a wide range of polymer types and connectors, resulting in a versatile new family of experimentally realisable materials with unique tuneable electronic properties. We demonstrate their stability on substrates and possibilities for doping and Dirac cone distortion. Notably, the cones can be maintained in 3D-layered crystals. Resembling covalent organic frameworks, these materials represent a potentially exciting new field combining the unique Dirac physics of graphene with the structural flexibility and design opportunities of organic-conjugated polymer chemistry.

6.
Org Lett ; 16(6): 1594-7, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24597661

RESUMO

A new modular approach to the smallest substituted cycloparaphenylenes (CPPs) is presented. This versatile method permits access to substituted CPPs, choosing the substituent at a late stage of the synthesis. Variously substituted [8]CPPs have been synthesized, and their properties analyzed. The structural characteristics of substituted CPPs are close to those of unsubstituted CPPs. However, their optoelectronic behavior differs remarkably due to the larger torsion angle between the phenyl units.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA