Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 47(22): 11527-11537, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31733056

RESUMO

DNA methyltransferases (DNMTs) are enzymes responsible for establishing and maintaining DNA methylation in cells. DNMT inhibition is actively pursued in cancer treatment, dominantly through the formation of irreversible covalent complexes between small molecular compounds and DNMTs that suffers from low efficacy and high cytotoxicity, as well as no selectivity towards different DNMTs. Herein, we discover aptamers against the maintenance DNA methyltransferase, DNMT1, by coupling Asymmetrical Flow Field-Flow Fractionation (AF4) with Systematic Evolution of Ligands by EXponential enrichment (SELEX). One of the identified aptamers, Apt. #9, contains a stem-loop structure, and can displace the hemi-methylated DNA duplex, the native substrate of DNMT1, off the protein on sub-micromolar scale, leading for effective enzymatic inhibition. Apt. #9 shows no inhibition nor binding activity towards two de novo DNMTs, DNMT3A and DNMT3B. Intriguingly, it can enter cancer cells with over-expression of DNMT1, colocalize with DNMT1 inside the nuclei, and inhibit the activity of DNMT1 in cells. This study opens the possibility of exploring the aptameric DNMT inhibitors being a new cancer therapeutic approach, by modulating DNMT activity selectively through reversible interaction. The aptamers could also be valuable tools for study of the functions of DNMTs and the related epigenetic mechanisms.


Assuntos
Aptâmeros de Nucleotídeos/química , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , Metilação de DNA/genética , Neoplasias/genética , Aptâmeros de Nucleotídeos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/análise , Epigênese Genética/genética , Células HEK293 , Células HeLa , Humanos , Neoplasias/tratamento farmacológico
2.
Anal Chem ; 92(10): 7071-7078, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32316720

RESUMO

Increasing applications of nanomaterials in consumer goods, industrial products, medical practices, etc., calls for the development of tools for rapid separation, quantification, and sizing of nanoparticles to ensure their safe and sustainable employment. While many techniques are available for characterization of pure, homogeneous nanomaterial preparations, particle sizing and counting remains difficult for heterogeneous mixtures that resulted from imperfect synthesis conditions, aggregation from product instability, or degradation during storage. Herein, nanoparticle tracking analysis (NTA) was coupled to asymmetrical flow field flow fraction (AF4) using a splitter manifold to enable online particle separation and counting. The high pressure and flow rate in AF4 were reduced to the levels compatible with NTA by the proper flow splitting design, and a syringe pump was employed to withdraw fluid through the exit port of the NTA and maintain consistent flow rates entering NTA for proper particle sizing. Successful AF4-NTA coupling was demonstrated by analyzing a mixture of polystyrene particles with the average diameters of ∼50, 100, and 200 nm. Good correlation was observed between the amount of each type of particle injected to and measured by the hyphenated system. The particle concentrations acquired using online and offline coupling of AF4-NTA also agreed well with each other. The nonspherical nanoparticles like gold nanorods and hexagonal boron nitride nanosheets were also analyzed to demonstrate the versatile applicability of this system. Our work has proved that AF4-NTA can achieve accurate online particle counting on different populations of the nanomaterials in a mixture, which cannot be done by either AF4 or NTA alone. It will be a valuable tool for rapid characterization of heterogeneous nanomaterial solutions without purification to fulfill the regulation requirement on the nanomaterial-containing products.


Assuntos
Fracionamento por Campo e Fluxo , Nanoestruturas/análise , Poliestirenos/análise , Tamanho da Partícula , Propriedades de Superfície
3.
Anal Chem ; 91(24): 15951-15958, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31742386

RESUMO

Extracellular vesicles (EVs) are cell-derived membranous vesicles that exist in nearly all biological fluids, including blood and urine; and carry a great number of cargo molecules such as protein, nucleic acids, and lipid. They may play important roles in cell-cell communication and modulation of pathological processes, which, however, are not yet well understood, calling for highly sensitive, specific, and rapid methods for EV detection and quantification in biological samples. Here, we report the CuS-enclosed microgels that not only help enrich EVs carrying specific protein markers from complex biomatrices, but also produce strong chemiluminescence (CL) to realize sensitive detection of the target EVs. A detection limit of 104 EV particles/mL was achieved with these microgels by targeting EV proteins like CD63 and HER2, with a dynamic range up to 108 particles/mL. Direct detection of EVs in human serum and cell culture medium without tedious sample preparation was demonstrated, consuming much less sample compared to ELISA and Western Blot. We envision that our method will be valuable for quick quantification of EVs in biological samples, benefiting disease monitoring and functional study.


Assuntos
Cobre/química , Vesículas Extracelulares/metabolismo , Medições Luminescentes/métodos , Microgéis/química , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Humanos , Análise de Componente Principal , Receptor ErbB-2/análise , Receptor ErbB-2/imunologia , Tetraspanina 30/análise , Tetraspanina 30/imunologia
4.
Anal Chem ; 90(4): 2787-2795, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29381333

RESUMO

Exosomes play important roles in mediating intercellular communication and regulating a variety of biological processes, but clear understanding of their functions and biogenesis has not been achieved, due to the high technical difficulties involved in analysis of small vesicular structures that contain a high proportion of membrane structures. Herein, we designed a novel approach to integrate two nanomaterials carrying varied surface properties, the hydrophilic, macroporous graphene foam (GF) and the amphiphilic periodic mesoporous organosilica (PMO), for efficient exosome isolation from human serum and effective protein profiling. The high specific surface area of GF, after modification with the antibody against the exosomal protein marker, CD63, allowed highly specific isolation of exosomes from complex biological samples with high recovery. Since the organic solvent, methanol, turned out to be the most effective lysis solution for releasing the exosomal proteins, the amphiphilic PMO was employed to rapidly recover the exosomal proteins, including the highly hydrophobic membrane proteins. The fine pores of PMO also acted as the nanoreactors to accelerate protein digestion that produced peptides subject to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. A total of 334 proteins with 111 membrane proteins [31% of these contained >2 transmembrane domains (TMD)] were identified using the integrated GF/PMO platform. In contrast, with the commercial exosome isolation kit and the in-solution protein digestion method, only 151 proteins were found, with 28 being membrane proteins (only one contained three TMDs). Our results support that the integrated GF/PMO platform is of great value to facilitate the comprehensive characterization of exosomal proteins for better understanding of their functions and for identification of more exosome-based disease markers.


Assuntos
Exossomos/química , Proteínas de Membrana/análise , Nanoestruturas/química , Grafite/química , Humanos , Compostos de Organossilício/química , Tamanho da Partícula , Porosidade , Propriedades de Superfície
5.
Angew Chem Int Ed Engl ; 57(48): 15675-15680, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30291794

RESUMO

Extracellular vesicles (EVs) actively participate in intercellular communication and pathological processes. Studying the molecular signatures of EVs is key to reveal their biological functions and clinical values, which, however, is greatly hindered by their sub-100 nm dimensions, the low quantities of biomolecules each EV carries, and the large population heterogeneity. Now, single-EV flow cytometry analysis is introduced to realize single EV counting and phenotyping in a conventional flow cytometer for the first time, enabled by target-initiated engineering (TIE) of DNA nanostructures on each EV. By illuminating multiple markers on single EVs, statistically significant differences are revealed among the molecular signatures of EVs originating from several breast cancer cell lines, and the cancer cell-derived EVs among the heterogeneous EV populations are successfully recognized. Thus, our approach holds great potential for various biological and biomedical applications.


Assuntos
Neoplasias da Mama/química , Vesículas Extracelulares/metabolismo , Citometria de Fluxo , Neoplasias da Mama/metabolismo , Vesículas Extracelulares/química , Feminino , Humanos , Tamanho da Partícula
6.
Anal Chem ; 89(21): 11758-11764, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29034677

RESUMO

Nanomaterials have shown great promise in advancing biomedical and environmental analysis because of the unique properties originated from their ultrafine dimensions. In general, nanomaterials are separately applied to either enhance detection by producing strong signals upon target recognition or to specifically extract analytes taking advantage of their high specific surface area. Herein, we report a dual-functional nanomaterial-based platform that can simultaneously enrich and enable sensitive detection of multiple metal ions. The macroporous graphene foam (GF) we prepared displays abundant phosphate groups on the surface and can extract divalent metal ions via metal-phosphate coordination. The enriched metal ions then activate the metal-responsive DNAzymes and produce the fluorescently labeled single-stranded DNAs that are adsorbed and quenched by the GF. The resultant fluorescence reduction can be used for metal quantitation. The present work demonstrated duplexed detection of Pb2+ and Cu2+ using the Pb- and Cu-responsive DNAzymes, achieving a low detection limit of 50 pM and 0.6 nM, respectively. Successful quantification of Pb2+ and Cu2+ in human serum and river water were achieved with high metal recovery. Since the phosphate-decorated GF can enrich diverse types of divalent metal cations, this dual-functional GF-DNAzyme platform can serve as a simple and cost-effective tool for rapid and accurate metal quantification in determination of human metal exposure and inspection of environmental contamination.


Assuntos
Técnicas Biossensoriais/métodos , Cobre/análise , Grafite/química , Chumbo/análise , Limite de Detecção , Adsorção , Cobre/sangue , Cobre/química , DNA Catalítico/química , DNA Catalítico/metabolismo , Corantes Fluorescentes/química , Humanos , Chumbo/sangue , Chumbo/química , Porosidade , Fatores de Tempo , Água/química
7.
Anal Chem ; 89(22): 12327-12333, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29069893

RESUMO

The present work investigates the capability of single-stranded DNA (ssDNA) in enhancing the intrinsic peroxidase-like activity of the g-C3N4 nanosheets (NSs). We found that ssDNA adsorbed on g-C3N4 NSs could improve the catalytic activity of the nanosheets. The maximum reaction rate of the H2O2-mediated TMB oxidation catalyzed by the ssDNA-NSs hybrid was at least 4 times faster than that obtained with unmodified NSs. The activity enhancement could be attributed to the strong interaction between TMB and ssDNA mediated by electrostatic attraction and aromatic stacking and by both the length and base composition of the ssDNA. The high catalytic activity of the ssDNA-NSs hybrid permitted sensitive colorimetric detection of exosomes if the aptamer against CD63, a surface marker of exosome, was employed in hybrid construction. The sensor recognized the differential expression of CD63 between the exosomes produced by a breast cancer cell line (MCF-7) and a control cell line (MCF-10A). Moreover, a similar trend was detected in the circulating exosomes isolated from the sera samples collected from breast cancer patients and healthy controls. Our work sheds lights on the possibility of using ssDNA to enhance the peroxidase-like activity of nanomaterials and demonstrates the high potential of the ssDNA-NSs hybrid in clinical diagnosis using liquid biopsy.


Assuntos
Carbono/química , DNA de Cadeia Simples/química , Exossomos/química , Nanoestruturas/química , Nitrilas/química , Peroxidase/química , Adsorção , Benzidinas/química , Catálise , Células Cultivadas , Humanos , Peróxido de Hidrogênio/química , Células MCF-7 , Propriedades de Superfície
8.
Biosens Bioelectron ; 192: 113502, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34298496

RESUMO

Extracellular vesicles (EVs) are essential intercellular communicators that are of increasing interest as diagnostic biomarkers. Exploring their biological functions and clinical values, however, remains challenging due to their small sizes and high heterogeneity. Herein, we report an ultrasensitive method that employs target-initiated construction of DNA nanostructure to detect single EVs with an input as low as 100 vesicles/µL. Taking advantage of both DNA nanostructure labeling and EV membrane staining, the method can also permit calibration-free analysis of the protein profiles among different EV samples, leading to clear EV differentiation by their cell of origin. Moreover, this method allows co-localization of dual protein markers on the same EV, and the increased number of EVs carrying dual tumor proteins present in human serum could differentiate cancer patients at the early developmental stage from healthy controls. Our results demonstrate the great potential of this single-EV visualization method in non-invasive detection of the EV-based protein biomarkers for cancer diagnosis and treatment monitoring.


Assuntos
Técnicas Biossensoriais , Vesículas Extracelulares , Nanoestruturas , DNA , Humanos , Proteínas de Membrana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA