Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 17(1): 8, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28077082

RESUMO

BACKGROUND: Plants respond to abiotic stress on physiological, biochemical and molecular levels. This includes a global change in their cellular proteome achieved by changes in the pattern of their protein synthesis and degradation. The ubiquitin-proteasome system (UPS) is a key player in protein degradation in eukaryotes. Proteins are marked for degradation by the proteasome by coupling short chains of ubiquitin polypeptides in a three-step pathway. The last and regulatory stage is catalyzed by a member of a large family of substrate-specific ubiquitin ligases. RESULTS: We have identified AtPUB46 and AtPUB48-two paralogous genes that encode ubiquitin ligases (E3s)-to have a role in the plant environmental response. The AtPUB46, -47, and -48 appear as tandem gene copies on chromosome 5, and we present a phylogenetic analysis that traces their evolution from an ancestral PUB-ARM gene. Single homozygous T-DNA insertion mutants of AtPUB46 and AtPUB48 displayed hypersensitivity to water stress; this was not observed for similar mutants of AtPUB47. Although the three genes show a similar spatial expression pattern, the steady state levels of their transcripts are differentially affected by abiotic stresses and plant hormones. CONCLUSIONS: AtPUB46 and AtPUB48 encode plant U-Box E3s and are involved in the response to water stress. Our data suggest that despite encoding highly homologous proteins, AtPUB46 and AtPUB48 biological activity does not fully overlap.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Secas , Estresse Fisiológico/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Mutação/genética
2.
Plant J ; 73(6): 993-1005, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23240817

RESUMO

A plant's ability to cope with salt stress is highly correlated with their ability to reduce the accumulation of sodium ions in the shoot. Arabidopsis mutants affected in the ABSCISIC ACID INSENSITIVE (ABI) 4 gene display increased salt tolerance, whereas ABI4-overexpressors are hypersensitive to salinity from seed germination to late vegetative developmental stages. In this study we demonstrate that abi4 mutant plants accumulate lower levels of sodium ions and higher levels of proline than wild-type plants following salt stress. We show higher HKT1;1 expression in abi4 mutant plants and lower levels of expression in ABI4-overexpressing plants, resulting in reduced accumulation of sodium ions in the shoot of abi4 mutants. HKT1;1 encodes a sodium transporter which is known to unload sodium ions from the root xylem stream into the xylem parenchyma stele cells. We have shown recently that ABI4 is expressed in the root stele at various developmental stages and that it plays a key role in determining root architecture. Thus ABI4 and HKT1;1 are expressed in the same cells, which suggests the possibility of direct binding of ABI4 to the HKT1;1 promoter. In planta chromatin immunoprecipitation and in vitro electrophoresis mobility shift assays demonstrated that ABI4 binds two highly related sites within the HKT1;1 promoter. These sites, GC(C/G)GCTT(T), termed ABI4-binding element (ABE), have also been identified in other ABI4-repressed genes. We therefore suggest that ABI4 is a major modulator of root development and function.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Transporte de Cátions/metabolismo , Raízes de Plantas/metabolismo , Simportadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Sítios de Ligação , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Prolina/metabolismo , Regiões Promotoras Genéticas , Tolerância ao Sal/fisiologia , Sódio/metabolismo , Simportadores/genética , Fatores de Transcrição/genética , Xilema/citologia , Xilema/genética , Xilema/metabolismo
3.
Planta ; 232(1): 187-95, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20390294

RESUMO

Sodium/proton exchangers (NHX) are key players in the plant response to salinity and have a central role in establishing ion homeostasis. NHXs can be localized in the tonoplast or plasma membranes, where they exchange sodium ions for protons, resulting in sodium ions being removed from the cytosol into the vacuole or extracellular space. The expression of most plant NHX genes is modulated by exposure of the organisms to salt stress or water stress. We explored the regulation of the vacuolar NHX1 gene from the salt-tolerant sugar beet plant (BvNHX1) using Arabidopsis plants transformed with an array of constructs of BvHNX1::GUS, and the expression patterns were characterized using histological and quantitative assays. The 5 UTR of BvNHX1, including its intron, does not modulate the activity of the promoter. Serial deletions show that a 337 bp promoter fragment sufficed for driving activity that indistinguishable from that of the full-length (2,464 bp) promoter. Mutating four putative cis-acting elements within the 337 bp promoter fragment revealed that MYB transcription factor(s) are involved in the activation of the expression of BvNHX1 upon exposure to salt and water stresses. Gel mobility shift assay confirmed that the WT but not the mutated MYB binding site is bound by nuclear protein extracted from salt-stressed Beta vulgaris leaves.


Assuntos
Beta vulgaris/genética , Genes de Plantas , Trocadores de Sódio-Hidrogênio/fisiologia , Fatores de Transcrição/fisiologia , Regiões 5' não Traduzidas , Sequência de Bases , Clonagem Molecular , Primers do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica de Plantas , Regiões Promotoras Genéticas , Trocadores de Sódio-Hidrogênio/genética
4.
Plant Sci ; 276: 220-228, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30348322

RESUMO

The U-Box E3 ubiquitin ligase, AtPUB46, functions in the drought response: T-DNA insertion mutants of this single paralogous gene are hypersensitive to water- and oxidative stress (Adler et al. BMC Plant Biology 17:8, 2017). Here we analyze the phenotype of AtPUB46 overexpressing (OE) plants. AtPUB46-OE show increased tolerance to water stress and have smaller leaf blades and reduced stomatal pore area and stomatal index compared with wild type (WT). Despite this, the rate of water loss from detached rosettes is similar in AtPUB46-OE and WT plants. Germination of AtPUB46-OE seeds was less sensitive to salt than WT whereas seedling greening was more sensitive. We observed a complex response to oxidative stress applied by different agents: AtPUB46-OE plants were hypersensitive to H2O2 but hyposensitive to methyl viologen. AtPUB46-GFP fusion protein is cytoplasmic, however, in response to H2O2 a considerable proportion translocates to the nucleus. We conclude that the differential stress phenotype of the AtPUB46-OE does not result from its smaller leaf size but from a change in the activity of a stress pathway(s) regulated by a degradation substrate of the AtPUB46 E3 and also from a reduction in stomatal pore size and index.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Peróxido de Hidrogênio/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Citoplasma/enzimologia , Desidratação , Secas , Genes Reporter , Germinação , Estresse Oxidativo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Estômatos de Plantas/enzimologia , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Proteínas Recombinantes de Fusão , Plântula/enzimologia , Plântula/genética , Plântula/fisiologia , Sementes/enzimologia , Sementes/genética , Sementes/fisiologia , Cloreto de Sódio/metabolismo , Estresse Fisiológico , Ubiquitina-Proteína Ligases/genética
5.
PLoS One ; 8(12): e82548, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24340039

RESUMO

The chloroplast is the most prominent and metabolically active plastid in photosynthetic plants. Chloroplasts differentiate from proplastids in the plant meristem. Plant plastids contain multiple copies of a small circular genome. The numbers of chloroplasts per mesophyll cell and of plastid genome copies are affected by developmental stage and environmental signals. We compared chloroplast structure, gene expression and genome copy number in Arabidopsis seedlings germinated and grown under optimal conditions to those in seedlings germinated and grown in the presence of NaCl. Chloroplasts of the NaCl-grown seedlings were impaired, with less developed thylakoid and granum membranes than control seedlings. In addition, chloroplasts of salt-grown Arabidopsis seedlings accumulated more starch grains than those in the respective control plants. Steady-state transcript levels of chloroplast-encoded genes and of nuclear genes encoding chloroplast proteins were reduced in salt-grown seedlings. This reduction did not result from a global decrease in gene expression, since the expression of other nuclear genes was induced or not affected. Average cellular chloroplast genome copy number was reduced in salt-grown seedlings, suggesting that the reduction in steady-state transcript levels of chloroplast-encoded genes might result from a decrease in template DNA.


Assuntos
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Dosagem de Genes , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plântula/metabolismo , Transcrição Gênica/efeitos dos fármacos , Arabidopsis/genética , Cloroplastos/genética , Plântula/genética , Cloreto de Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA