Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 366-373, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37927171

RESUMO

The bioavailability, small size and direct absorption in the blood, make nanoparticles (NPs) a remarkable feed additive in the aquaculture industry. Therefore, dietary iron oxide nanoparticles (Fe2 O3 -NPs) were used to examine their effects on growth, nutrient absorption, body composition and blood indices in Cyprinus carpio (Common carp) fingerlings. Healthy C. carpio fingerlings (n = 270) were fed with six canola meal based experimental diets (D1-control, D2, D3, D4, D5, D6) supplemented with 0, 10, 20, 30, 40 and 50 mg/kg Fe2 O3 -NPs respectively. A total of 15 fingerlings (average initial weight 5.51 ± 0.04 g/fish) were kept in triplicates for 70 days. The results indicated that maximum growth performance, apparent digestibility coefficient, body composition and haematological parameters were observed in 40 mg/kg Fe2 O3 -NPs supplementation. All the experimental diets were significantly improved (p < 0.05) in all the above parameters than control diet. In the present research, the recommended dosage of Fe2 O3 -NPs as dietary supplement is 40 mg/kg for improving the growth, nutrient absorption, body composition and haematological indices in C. carpio fingerlings. Hence, this study demonstrates the potential of NPs to improve the health of fish.


Assuntos
Carpas , Animais , Exposição Dietética , Suplementos Nutricionais/análise , Dieta/veterinária , Composição Corporal , Nanopartículas Magnéticas de Óxido de Ferro , Nutrientes , Ração Animal/análise
2.
Ecotoxicol Environ Saf ; 208: 111627, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396147

RESUMO

A pot study was conducted to explore the effectiveness of zinc oxide nanoparticles (ZnO NPs) foliar exposure on growth and development of wheat, zinc (Zn) and cadmium (Cd) uptake in Cd-contaminated soil under various moisture conditions. Four different levels (0, 25, 50, 100 mg/L) of these NPs were foliar-applied at different time periods during the growth of wheat. Two soil moisture regimes (70% and 35% of water holding capacity) were maintained from 6 weeks of germination till plant harvesting. The results revealed that the growth of wheat increased with ZnO NPs treatments. The best results were found in 100 mg/L ZnO NPs under normal moisture level. The lowest Cd and highest Zn concentrations were also examined when 100 mg/L NPs were applied without water deficit stress. In grain, Cd concentrations decreased by 26%, 81% and 87% in normal moisture while in water deficit conditions, the Cd concentrations decreased by 35%, 66% and 81% compared to control treatment when ZnO NPs were used at 25, 50 and 100 mg/L. The foliar exposure of ZnO NPs boosted up the leaf chlorophyll contents and also decreased the oxidative stress and enhanced the leaf superoxide dismutase and peroxidase activities than the control. It can be suggested that foliar use of ZnO NPs might be an efficient way for increasing wheat growth and yield with maximum Zn and minimum Cd contents under drought stress while decreasing the chances of NPs movement to other environmental compartment which may be possible in soil applied NPs.


Assuntos
Cádmio/toxicidade , Secas , Nanopartículas/química , Poluentes do Solo/toxicidade , Triticum/fisiologia , Óxido de Zinco/química , Cádmio/análise , Clorofila , Grão Comestível/química , Poluição Ambiental , Estresse Oxidativo , Folhas de Planta/química , Solo , Poluentes do Solo/análise , Triticum/crescimento & desenvolvimento , Água , Zinco/análise
3.
Ecotoxicol Environ Saf ; 221: 112437, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34153540

RESUMO

Agricultural soils are receiving higher inputs of trace elements (TEs) from anthropogenic activities. Application of nanoparticles (NPs) in agriculture as nano-pesticides and nano-fertilizers has gained rapid momentum worldwide. The NPs-based fertilizers can facilitate controlled-release of nutrients which may be absorbed by plants more efficiently than conventional fertilizers. Due to their large surface area with high sorption capacity, NPs can be used to reduce excess TEs uptake by plants. The present review summarizes the effects of NPs on plant growth, photosynthesis, mineral nutrients uptake and TEs concentrations. It also highlights the possible mechanisms underlying NPs-mediated reduction of TEs toxicity at the soil and plant interphase. Nanoparticles are effective in immobilization of TEs in soil through alteration of their speciation and improving soil physical, chemical, and biological properties. At the plant level, NPs reduce TEs translocation from roots to shoots by promoting structural alterations, modifying gene expression, and improving antioxidant defense systems. However, the mechanisms underlying NPs-mediated TEs uptake and toxicity reduction vary with NPs type, mode of application, time of NPs exposure, and plant conditions (e.g., species, cultivars, and growth rate). The review emphasizes that NPs may provide new perspectives to resolve the problem of TEs toxicity in crop plants which may also reduce the food security risks. However, the potential of NPs in metal-contaminated soils is only just starting to be realized, and additional studies are required to explore the mechanisms of NPs-mediated TEs immobilization in soil and uptake by plants. Such future knowledge gap has been highlighted and discussed.


Assuntos
Nanopartículas , Plantas/efeitos dos fármacos , Oligoelementos/metabolismo , Oligoelementos/toxicidade , Agricultura , Metais/metabolismo , Metais/toxicidade , Raízes de Plantas/metabolismo , Plantas/metabolismo , Solo/química , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade
4.
Ecotoxicol Environ Saf ; 212: 111978, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33561774

RESUMO

Nanotechnology is capturing great interest worldwide due to their stirring applications in various fields. Among nanoparticles (NPs), titanium dioxide (TiO2) NPs have been widely used in daily life and can be synthesized through various physical, chemical, and green methods. Green synthesis is a non-toxic, cost-effective, and eco-friendly route for the synthesis of NPs. Plenty of work has been reported on the green, chemical, physical and biological synthesis of TiO2 NPs and these NPs can be characterized through high tech. instruments. In the present review, dense data have been presented on the comparative synthesis of TiO2 NPs with different characteristics and their wide range of applications. Among the TiO2 NPs synthesis techniques, the green methods have been proven to be efficient than chemical synthesis methods because of the less use of precursors, time-effectiveness, and energy-efficiency during the green synthesis procedures. Moreover, this review describes the types of plants (shrubs, herbs and trees), microorganisms (bacteria, fungi and algae), biological derivatives (proteins, peptides, and starches) employed for the synthesis of TiO2 NPs. The TiO2 NPs can be effectively used for the treatment of polluted water and positively affected the plant physiology especially under abiotic stresses but the response varied with types, size, shapes, doses, duration of exposure, metal species along with other factors. This review also highlights the regulating features and future standpoints for the measurable enrichment in TiO2 NPs product and perspectives of TiO2 NPs reliable application.


Assuntos
Nanopartículas , Titânio , Nanopartículas Metálicas/química , Extratos Vegetais , Plantas/química
5.
Ecotoxicol Environ Saf ; 148: 825-833, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29197797

RESUMO

Cadmium (Cd) and drought stress in plants is a worldwide problem, whereas little is known about the effect of biochar (BC) under combined Cd and drought stress. The current study was conducted to determine the impact of BC on Cd uptake in wheat sown in Cd-contaminated soil under drought stress. Wheat was grown in a soil after incubating the soil for 15 days with three levels of BC (0%, 3.0% and 5.0% w/w). Three levels of drought stress (well-watered, mild drought and severe drought containing 70%, 50%, and 35% of soil water holding capacity respectively) were applied to 45-d-old wheat plants. Drought stress decreased plant height, spike length, chlorophyll contents, gas exchange parameters, root and shoot dry biomasses and grain yields. Drought stress also caused oxidative stress and decreased the antioxidant enzymes activities whereas increased the Cd concentration in plants. Biochar increased morphological and physiological parameters of wheat under combined drought and Cd stress and reduced the oxidative stress and Cd contents and increased antioxidant enzymes activities. The decrease in Cd concentration with BC application in drought-stressed plant might be attributed to BC-induced increase in crop biomass production and reduction in oxidative stress. These results indicate that BC could be used as an amendment in metal contaminated soil for improving wheat growth and reducing Cd concentrations under semiarid conditions.


Assuntos
Cádmio/análise , Carvão Vegetal/química , Secas , Poluentes do Solo/análise , Triticum/crescimento & desenvolvimento , Biomassa , Grão Comestível/química , Raízes de Plantas/química , Solo/química , Triticum/química
6.
J Environ Manage ; 206: 676-683, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29149723

RESUMO

Soil cadmium (Cd) contamination and drought stress are among the main issues hindering global food security. Biochar has been used to reduce metal uptake by plants and water stress mitigation, but long-term residual effects of biochar under Cd stress at different moisture levels needs to be investigated. A following rice (Oryza sativa L.) was grown after wheat on Cd-contaminated soil amended with different levels of biochar (0, 3.0, and 5.0%, w/w). Thirty five days old plants were irrigated with three moisture levels including zero drought as a control (1-2 cm water layer on soil), mild drought (MD, 50% of soil water holding capacity, WHC), and severe drought (SD, 35% of soil WHC) for an accompanying 35 days. Plant height, biomass and photosynthesis were reduced whereas oxidative stress increased under MD and SD than control in un-amended soil while opposite trends were observed in plants grown in biochar amended soil. At the same biochar addition, Cd concentrations in seedlings were lower in continuous flooding than MD and SD treatments. The biochar supply reduced the bioavailable Cd in the soil whereas increased the soil EC and pH than the control treatment. In conclusion, continuous flooding plus residual biochar can be strategized in mitigating Cd-contamination in paddy soils and decreased Cd concentrations in rice which may reduce the potential risks to humans.


Assuntos
Cádmio/farmacocinética , Carvão Vegetal , Fotossíntese , Poluentes do Solo/farmacocinética , Oryza , Solo , Água
7.
J Environ Manage ; 190: 252-258, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28061409

RESUMO

In any contaminated environment, the sensitive plant species can serve as bio-indicator of air pollution while tolerant plant species can act as a sink for air pollutants. Air pollution tolerance index (APTI) is an important tool to screen out plants based on their tolerance or sensitivity level to different air pollutants. The present study was aimed to identify the sensitive and tolerant plant species in the vicinity of brick kilns in the Rawalpindi city. To determine the susceptibility level of the selected plant species, four biochemical parameters, ascorbic acid, total chlorophyll content, relative water content and pH of leaf extract, were assessed and APTI was calculated. Plant sampling was carried out with increasing distance of 100, 300 and 500 m around three brick kiln sites and APTI values were calculated by following the standard methods. The results of the study revealed that among nine studied plant species, Calotropis procera (APTI = 20.05) and Althernanthera pungens (APTI = 17.13) were found to be the most tolerant species, whereas Malva neglecta (APTI = 8.83) was found to be the most sensitive species. Inconsistent trend of variations was seen in the APTI values at each site. The present study suggested that the most tolerant species, C. procera and A. pungens, could be grown in the vicinity of such pollution sources as a remedial measure of brick kiln pollution.


Assuntos
Poluentes Atmosféricos/metabolismo , Poluição do Ar/prevenção & controle , Monitoramento Ambiental , Resíduos Industriais , Plantas/metabolismo , Cidades , Paquistão , Folhas de Planta/metabolismo
8.
Environ Monit Assess ; 188(5): 267, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27048492

RESUMO

Gaseous pollutant emissions from brick kiln industries deteriorate the current state of ambient air quality in Pakistan and worldwide. These gaseous pollutants affect the health of plants and may decrease plant growth and yield. A field experiment that was conducted to monitor the concentration of gaseous pollutants emitted mainly from brick kilns in the ambient air and associated impacts on the growth and physiological attributes of the two wheat (Triticum spp.) cultivars. Plants were grown at three sites, including control (Ayub Agriculture Research Institute, AARI), low pollution (LP) site (Small Estate Industry), and high pollution (HP) site (Sidar Bypass), of Faisalabad, Pakistan. Monitoring of ambient air pollution at experimental sites was carried out using the state-of-art ambient air analyzers. Plants were harvested after 120 days of germination and were analyzed for different growth attributes. Results showed that the hourly average concentration of gaseous air pollutants CO, NO2, SO2, and PM10 at HP site were significantly higher than the LP and control sites. Similarly, gaseous pollutants decreased plant height, straw and grain yield, photosynthesis and increased physical injury, and metal concentrations in the grains. However, wheat response toward gaseous pollutants did not differ between cultivars (Galaxy and 8173) studied. Overall, the results indicated that brick kiln emissions could reduce the performance of wheat grown in the soils around kilns and confirm the adverse impacts of pollutants on the growth, yield, and quality of the wheat.


Assuntos
Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Materiais de Construção , Monitoramento Ambiental , Fotossíntese/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos dos fármacos , Triticum/efeitos dos fármacos , Agricultura , Poluição do Ar/análise , Gases , Indústrias , Metais , Paquistão , Triticum/crescimento & desenvolvimento
9.
Lipids Health Dis ; 14: 58, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26099651

RESUMO

BACKGROUND: Edible coatings have beneficial effect on quality of fish and act as barrier against moisture transfer and uptake of oxygen. Edible coating made up of biodegradable materials is helpful to control the quality deterioration and enhance the shelf life. METHODS: The present study was designed to elucidate the effects of whey based protein using two plasticizers i.e. sorbitol and glycerol on oxidative stability and quality characteristics of Rohu (Labeo rohita). Coating solutions were prepared by incorporating whey (8% protein; w/ w) in distilled water followed addition of sorbitol and glycerol. Dipping method was used to apply coating on fish fillets. The coated fillets were subjected to quality characteristics, pH, color, TBARS, peroxide value, volatile basic nitrogen (TVBN) and sensory evaluation during 40 days of storage. RESULTS: The results showed significant impact on different quality attributes of fish fillets. Highest (TVBN) and TBARS were observed in control samples (T0) (12.60 ± 0.25, mg/100 g, 0.820 ± 0.02 mg MDA/kg) while lowest in T3 coated samples (8.81 ± 0.18 mg/100 g., 0.352 ± 0.01 mg MDA/kg of meat). Moreover, sensorial findings did not showed adverse effects and T3 coated samples were ranked higher by consumers. CONCLUSION: In conclusion, coating fish with Whey: Glycerol: Sorbitol (1:1:1) in current investigation enhances the storage life and quality of fish fillets.


Assuntos
Carne/normas , Proteínas do Soro do Leite/química , Animais , Cor , Peixes , Concentração de Íons de Hidrogênio , Nitrogênio/análise , Óleos , Oxirredução , Peróxidos/análise , Sensação , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Volatilização
10.
Ecotoxicol Environ Saf ; 122: 1-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26164268

RESUMO

Chromium (Cr) is one of the most phytotoxic metals in the agricultural soils and its concentration is continuously increasing mainly through anthropogenic activities. Little is known on the role of mannitol (M) on plant growth and physiology under metal stress. The aim of this study was to investigate the mechanism of growth amelioration and antioxidant enzyme activities in Cr-stressed wheat (Triticum aestivum L. cv. Lasani 2008) by exogenously applied mannitol. For this, wheat seedlings were sown in pots containing soil or sand and subjected to increasing Cr concentration (0, 0.25 and 0.5mM) in the form of of K2Cr2O7 with and without foliar application of 100mM mannitol. Plants were harvested after four months and data regarding growth characteristics, biomass, photosynthetic pigments, and antioxidant enzymes were recorded. Mannitol application increased plant biomass, photosynthetic pigments and antioxidant enzymes while decreased Cr uptake and accumulation in plants as compared to Cr treatments alone. In this study, we observed that M applied exogenously to Cr-stressed wheat plants, which normally cannot synthesize M, improved their Cr tolerance by increasing growth, photosynthetic pigments and enhancing activities of antioxidant enzymes and by decreasing Cr uptake and translocation in wheat plants. From this study, it can be concluded that M could be used to grow crops on marginally contaminated soils for which separate remediation techniques are time consuming and not cost effective.


Assuntos
Antioxidantes/metabolismo , Cromo/toxicidade , Manitol/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/toxicidade , Triticum/efeitos dos fármacos , Biomassa , Cromo/análise , Manitol/metabolismo , Oxirredução , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/crescimento & desenvolvimento , Solo/química , Poluentes do Solo/análise , Triticum/enzimologia , Triticum/crescimento & desenvolvimento
11.
Ecotoxicol Environ Saf ; 119: 186-97, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26004359

RESUMO

In present era, heavy metal pollution is rapidly increasing which present many environmental problems. These heavy metals are mainly accumulated in soil and are transferred to food chain through plants grown on these soils. Silicon (Si) is the second most abundant element in the soil. It has been widely reported that Si can stimulate plant growth and alleviate various biotic and abiotic stresses, including heavy metal stress. Research to date has explored a number of mechanisms through which Si can alleviate heavy metal toxicity in plants at both plant and soil levels. Here we reviewed the mechanisms through which Si can alleviate heavy metal toxicity in plants. The key mechanisms evoked include reducing active heavy metal ions in growth media, reduced metal uptake and root-to-shoot translocation, chelation and stimulation of antioxidant systems in plants, complexation and co-precipitation of toxic metals with Si in different plant parts, compartmentation and structural alterations in plants and regulation of the expression of metal transport genes. However, these mechanisms might be associated with plant species, genotypes, metal elements, growth conditions, duration of the stress imposed and so on. Further research orientation is also discussed.


Assuntos
Metais Pesados/toxicidade , Plantas/metabolismo , Silício/metabolismo , Poluentes do Solo/toxicidade , Antioxidantes/metabolismo , Transporte Biológico/fisiologia , Poluição Ambiental/efeitos adversos , Íons/metabolismo , Estresse Oxidativo/fisiologia , Desenvolvimento Vegetal/fisiologia , Raízes de Plantas/metabolismo , Poluentes do Solo/química
12.
Heliyon ; 10(4): e26573, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38434023

RESUMO

High protein content, excellent amino acid profile, absence of anti-nutritional factors (ANFs), high digestibility and good palatability of fishmeal (FM), make it a major source of protein in aquaculture. Naturally derived FM is at risk due to an increase in its demand, unsustainable practices, and price. Thus, there is an urgent need to find affordable and suitable protein sources to replace FM. Plant protein sources are suitable due to their widespread availability and low cost. However, they contained certain ANFs, deficiency of some amino acids, low nutrient bioavailability and poor digestibility due to presence of starch and fiber. These unfavourable characteristics make them less suitable for feed as compared to FM. Thus, these potential challenges and limitations associated with various plant proteins have to be overcome by using different methods, i.e. enzymatic pretreatments, solvent extraction, heat treatments and fermentation, that are discussed briefly in this review. This review assessed the impacts of plant products on growth performance, body composition, flesh quality, changes in metabolic activities and immune response of fishes. To minimize the negative effects and to enhance nutritional value of plant products, beneficial functional additives such as citric acid, phytase and probiotics could be incorporated into the plant-based FM. Interestingly, these additives improve growth of fishes by increasing digestibility and nutrient utilization of plant based feeds. Overall, this review demonstrated that the substitution of fishmeal by plant protein sources is a plausible, technically-viable and practical option for sustainable aquaculture feed production.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38012495

RESUMO

Municipal solid waste (MSW) management poses a significant environmental challenge in municipalities across developing nations worldwide. Our studies were focused on characterizing the waste and analyzing the chemical properties of mixed waste fractions to assess their potential for waste-to-energy conversion. The objective of our study was to scrutinize the existing state of the MSW management system and gauge its waste generation rates. Specific ASTM methods were employed to carry out both physical and chemical characterizations. The outcomes reveal that the city generates a daily volume of 1155 tons of domestic solid waste (DSW), translating to a generation rate of 0.51 kg-1 capita-1 day-1. When analyzed by source, organic matter emerged as the predominant constituent, accounting for 73.74% of the waste, followed by combustible content waste at 15.17%. The moisture content of MSW ranged between 26 and 58% throughout the seasons, while volatile solids varied from 22.35 to 99.74%. Among the components screened, carbon and oxygen stood out as the dominant elements. The calorific values encompassed a broad range, ranging from 14.87 MJ kg-1 for leather waste to a substantial 25,629.27 MJ kg-1 for organic waste. To alleviate the escalating burden of increasing solid waste generation, alternative treatment approaches were recommended. These include composting, biomethane plants, the establishment of recycling facilities, and the enhancement of existing landfill sites to scientifically designed landfills. In summary, the findings from this study provide valuable insights for regulatory bodies and municipal authorities. These insights can guide the formulation of policies concerning waste sampling, characterization, segregation, and the implementation of education and awareness campaigns.

14.
Chemosphere ; 345: 140495, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865204

RESUMO

Chromium (Cr) is classified as a toxic metal as it exerts harmful effects on plants and human life. Bacterial-assisted nano-phytoremediation is an emerging and environment friendly technique that can be used for the detoxification of such pollutants. In current study, pot experiment was conducted in which spinach plants were grown in soil containing chromium (0, 5, 10, 20 mgkg-1) and treated with selected strain of Bacillus sp. and Cu-O nanoparticle (CuONPs). Data related to plant's growth, physiological parameters, and biochemical tests was collected and analyzed using an appropriate statistical test. It was observed that under chromium stress, all plant's growth parameters were significantly enhanced in response to co-application of CuONPs and Bacillus sp. Similarly, higher levels of catalase, superoxide dismutase, malondialdehyde, and hydrogen peroxide were also observed. However, contents of anthocyanin, carotenoid, total chlorophyll, chlorophyll a & b, were lowered under chromium stress, which were raised in response to the combined application of CuONPs and Bacillus sp. Moreover, this co-application has significant positive effect on total soluble protein, free amino acid, and total phenolics. From this study, it was evident that combined application of Bacillus sp. and CuONP alleviated metal-induced toxicity in spinach plants. The findings from current study may provide new insights for agronomic research for the utilization of bacterial-assisted nano-phytoremediation of contaminated sites.


Assuntos
Bacillus , Nanopartículas , Poluentes do Solo , Humanos , Cromo/toxicidade , Cromo/metabolismo , Cobre/toxicidade , Cobre/metabolismo , Spinacia oleracea/metabolismo , Solo/química , Clorofila A/metabolismo , Bacillus/metabolismo , Biodegradação Ambiental , Nanopartículas/toxicidade , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo
15.
Environ Sci Pollut Res Int ; 29(46): 69680-69690, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35576036

RESUMO

The present work provides an insight into the development of biochemical adaptations in mung beans against ozone (O3) toxicity. The study aims to explore the O3 stress tolerance potential of mung bean genotypes under exogenous application of growth regulators. The seeds of twelve mung bean genotypes were grown in plastic pots under controlled conditions in the glasshouse. Six treatments, control (ambient ozone level 40-45 ppb), ambient O3 with ascorbic acid, ambient ozone with silicic acid, elevated ozone (120 ppb), elevated O3 with ascorbic acid (10 mM), and elevated ozone with silicic acid (0.1 mM) were applied. The O3 fumigation was carried out using an O3 generator. The results revealed that ascorbic acid and silicic acid application decreased the number of plants with foliar O3 injury symptoms in different degrees, i.e., zero, first, second, third, and fourth degrees; whereas 0-4 degree symptoms represent, no symptoms, symptoms occupying < 1/4, 1/4-1/2, 1/2-3/4, and > 3/4 of the total foliage area, respectively. Application of ascorbic acid and silicic acid also prevented the plants from the negative effects of O3 in terms of fresh as well as dry matter production, leaf chlorophyll, carotenoids, soluble proteins and ascorbic acid, proline, and malondialdehyde (MDA) contents. Overall, silicic acid application proved more effective in reducing the negative effects of O3 on mung bean genotypes as compared to that of the ascorbic acid. Three mung bean genotypes (NM 20-21, NM-2006, and NM-2016) were identified to have a better adaptive mechanism for O3 toxicity tolerance and may be good candidates for future variety development programs.


Assuntos
Fabaceae , Ozônio , Vigna , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacologia , Carotenoides/metabolismo , Clorofila/metabolismo , Malondialdeído/metabolismo , Ozônio/farmacologia , Folhas de Planta/metabolismo , Plásticos/metabolismo , Prolina/metabolismo , Ácido Silícico/metabolismo , Ácido Silícico/farmacologia , Vigna/metabolismo
16.
Environ Sci Pollut Res Int ; 29(51): 77321-77332, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35672649

RESUMO

The effects of foliar supply of silicon nanoparticles (Si-NPs) on growth, physiology, and cadmium (Cd) uptake by wheat (Triticum aestivum L.) were examined in different soil moisture levels. Seeds were sown in soil containing excess Cd (7.67 mg kg-1) and Si-NPs were applied through foliar dressing with various levels (0, 25, 50, 100 mg L-1) at different time intervals during growth period. Initially, all pots were irrigated with normal moisture level (70% water-holding capacity) and two moisture levels (35%, 70% WHC) were initiated after 6 weeks of plant growth for remaining growth duration and harvesting was done after 124 days of sowing. The results demonstrated the lowest plant growth, yield, and chlorophyll concentrations while the highest oxidative stress and Cd concentrations in plant tissues in water-stressed control (35% WHC) followed by normal control (75% WHC). Si-NPs enhanced the growth, photosynthesis, leaf defense system, and Si concentrations in tissues while minimized the Cd in wheat parts particularly in grains either soil normal or water-stressed conditions. Of the foliar spray, 100 mg L-1 of Si-NPs showed the best results with respect to growth, Cd and Si uptake by plants, and soil post-harvest bioavailable Cd irrespective of soil water levels. In grain, Cd concentration was below threshold limit (0.2 mg kg-1) for cereals in 100-mg kg-1 Si-NPs treatment irrespective of soil water levels. Si-NPs foliar dressing under Cd and water-limited stress might be an effective strategy in increasing growth, yield, and decreasing Cd concentration in wheat grains under experimental conditions. Thus, foliar dressing of Si-NPs minimized the Cd risk in food crops and NPs entry to surroundings, which might be possible after harvesting of crops in soil-applied NPs.


Assuntos
Nanopartículas , Poluentes do Solo , Cádmio/análise , Triticum , Silício/farmacologia , Poluentes do Solo/análise , Solo , Clorofila/farmacologia , Grão Comestível/química , Água
17.
Front Plant Sci ; 13: 876119, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35599879

RESUMO

The continuous increase in the heavy metals concentration in the soil due to anthropogenic activities has become a global issue. The chromium, especially hexavalent chromium, is highly toxic for living organisms due to high mobility, solubility, and carcinogenic properties. Considering the beneficial role of nanoparticles and bacteria in alleviating the metal stress in plants, a study was carried out to evaluate the role of cerium dioxide (CeO2) nanoparticles (NPs) and Staphylococcus aureus in alleviating the chromium toxicity in sunflower plants. Sunflower plants grown in chromium (Cr) contaminated soil (0, 25, and 50 mg kg-1) were treated with CeO2 nanoparticles (0, 25, and 50 mg L-1) and S. aureus. The application of Cerium Dioxide Nanoparticles (CeO2 NPs) significantly improved plant growth and biomass production, reduced oxidative stress, and enhanced the enzymatic activities in the sunflower plant grown under chromium stress. The application of S. aureus further enhanced the beneficial role of nanoparticles in alleviating metal-induced toxicity. The maximum improvement was noted in plants treated with both nanoparticles and S. aureus. The augmented application of CeO2 NPs (50 mg l-1) at Cr 50 mg kg-1 increased the chl a contents from 1.2 to 2.0, chl b contents 0.5 to 0.8 and mg g-1 FW, and decreased the leakage of the electrolyte from 121 to 104%. The findings proved that the application of CeO2 nanoparticles and S. aureus could significantly ameliorate the metal-induced stress in sunflower plants. The findings from this study can provide new horizons for research in the application of nanoparticles in phytoremediation and bioremediation.

18.
Chemosphere ; 298: 134348, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35306054

RESUMO

Cadmium (Cd) toxicity in agricultural soils is serious concern these days which needs continuous attention. Little is known about the combined use of berseem and/or maize residues soil applied as a green manure alone or along with foliar dressing of zinc oxide nanoparticles (ZnONPs) on Cd accumulation in wheat (Triticum aestivum L.). A pot experiment under ambient conditions with wheat grown in Cd-contaminated soil was performed after soil applied different green manure amendments and foliar dressing of ZnONPs was done during plant growth and plants were harvested at full maturity. Compared with control, plant growth attributes and biomass of above ground parts substantially increased with applied amendments being maximum with combined use of ZnONPs + B75 (berseem residue, 75 mg/kg) followed by ZnONPs + M75 (maize residue, 75 mg/kg). All the treatments improved the leaf chlorophyll contents and improved the leaf antioxidant enzyme activities thereby reduced the leaf electrolyte leakage. The Cd accumulation in roots and aboveground parts of the wheat was reduced especially in ZnONPs + B75 followed by ZnONPs + M75. The higher rate of soil applied amendments along with NPs minimized the available Cd in soil extracts but soil post-harvest pH was not much affected by the applied amendments. In conclusion, incorporation of berseem and maize residues as a green manure applied in Cd-contaminated soil combined with foliar NPs may decrease Cd phytoavailability and its accumulation in wheat grains. However, substantial field studies are required under various environmental conditions before final recommendations at field levels.


Assuntos
Nanopartículas , Poluentes do Solo , Óxido de Zinco , Antioxidantes/metabolismo , Cádmio/análise , Esterco , Nanopartículas/química , Solo/química , Poluentes do Solo/análise , Triticum/metabolismo , Zea mays/metabolismo , Óxido de Zinco/química
19.
Environ Pollut ; 304: 119249, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35390420

RESUMO

Both cancer and diabetes mellitus are serious health issues, accounting more than 11 million deaths worldwide annually. Targeted use of plant-mediated nanoparticles (NPs) in treatment of ailments has outstanding results due to their salient properties. The current study was designed to investigate the safe production of silver nanoparticles (AgNPs) from Acacia nilotica. Different concentrations of AgNO3 were tested to optimize the protocol for the synthesis of AgNPs from the bark extract. It was demonstrated that 0.1 M and 3 mM were found to be the optimum concentrations for the synthesis of AgNPs. Standard characterization techniques such as UV-vis spectrophotometry, SEM, SEM-EDX micrograph, spot analysis, elemental mapping and XRD were used for the conformation of biosynthesis of AgNPs. Absorption spectrum of plant-mediated AgNPs under UV-vis spectrophotometer showed a strong peak at 380 nm and 420 nm for AgNPs synthesized at 0.1 M and 3 mM concentration of salt. The SEM results showed that AgNPs were present in variable shapes within average particle size ranging from (20-50 nm). Anticancer, antidiabetic and antioxidant potential of green AgNPs was investigated and they showed promising results as compared to the positive and negative controls. Hence, AgNPs were found potent therapeutic agent against the human liver cancer cell lines (HepG2), strong inhibitor for α-glucosidase enzyme activity and scavenging agent against free radicals that cause oxidative stress. Further studies are however needed to confirm the molecular mechanism and biochemical reactions responsible for the anticancer and antidiabetic activities of the particles.


Assuntos
Acacia , Nanopartículas Metálicas , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prata/química
20.
Environ Pollut ; 309: 119769, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35850318

RESUMO

The present experiment was conducted to appraise the role of different seed priming agents in circumventing the negative impact of chromium (Cr) toxicity on canola plants. Chromium toxicity resulted in significant decline in photosynthetic pigments and growth attributes of two canola cultivars (Puriga and MS-007). Cr toxicity also resulted in higher oxidative stress mirrored as greater accumulation of hydrogen peroxide (H2O2) superoxide radical (O2•‒), electrolyte leakage (EL) and malondialdehyde (MDA). Further, lipoxygenase enzyme activity that catalyzes the peroxidation of membrane lipids was also enhanced due to Cr toxicity. Canola plants also manifested impaired methylglyoxal (MG) detoxification due to the downregulation of glyoxalase enzymes (GlyI and II) under Cr stress. Seed priming treatments viz. osmo-priming with calcium chloride (CaCl2) and hormonal priming with salicylic acid (SA) remarkably improved growth and chlorophyll content in both canola cultivars under Cr toxicity as compared to other priming treatments such as hydro-priming, redox priming (H2O2) and chemical priming (Se; selenium). Moreover, CaCl2 and SA seed priming also resulted in lower oxidative stress and improved enzymatic (SOD, POD, CAT, APX, GR, GST) and non-enzymatic (GSH, phenolics, flavonoids, proline) antioxidant system of both cultivars under Cr toxicity. Further, hormonal and osmo-priming strengthened glyoxalase and antioxidant systems, thus improving reactive oxygen species (ROS) and MG detoxification. In this background, the cultivar Puriga is considered Cr tolerant as it exhibited better growth and lesser oxidative stress in both seed priming and non-primed conditions under Cr toxicity than cv. MS-007.


Assuntos
Brassica napus , Selênio , Antioxidantes/metabolismo , Cloreto de Cálcio , Cromo , Peróxido de Hidrogênio/farmacologia , Oxirredução , Estresse Oxidativo , Sementes/metabolismo , Selênio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA