Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Biochem ; 14: 28, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24180491

RESUMO

BACKGROUND: YedY, a molybdoenzyme belonging to the sulfite oxidase family, is found in most Gram-negative bacteria. It contains a twin-arginine signal sequence that is cleaved after its translocation into the periplasm. Despite a weak reductase activity with substrates such as dimethyl sulfoxide or trimethylamine N-oxide, its natural substrate and its role in the cell remain unknown. Although sequence conservation of the YedY family displays a strictly conserved hydrophobic C-terminal residue, all known studies on Escherichia coli YedY have been performed with an enzyme containing a 6 histidine-tag at the C-terminus which could hamper enzyme activity. RESULTS: In this study, we demonstrate that the tag fused to the C-terminus of Rhodobacter sphaeroides YedY is detrimental to the enzyme's reductase activity and results in an eight-fold decrease in catalytic efficiency. Nonetheless this C-terminal tag does not influence the properties of the molybdenum active site, as assayed by EPR spectroscopy. When a cleavable His-tag was fused to the N-terminus of the mature enzyme in the absence of the signal sequence, YedY was expressed and folded with its cofactor. However, when the signal sequence was added upstream of the N-ter tag, the amount of enzyme produced was approximately ten-fold higher. CONCLUSION: Our study thus underscores the risk of using a C-terminus tagged enzyme while studying YedY, and presents an alternative strategy to express signal sequence-containing enzymes with an N-terminal tag. It brings new insights into molybdoenzyme maturation in R. sphaeroides showing that for some enzymes, maturation can occur in the absence of the signal sequence but that its presence is required for high expression of active enzyme.


Assuntos
Histidina/metabolismo , Oligopeptídeos/metabolismo , Oxirredutases/metabolismo , Rhodobacter sphaeroides/enzimologia , Domínio Catalítico , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/metabolismo , Expressão Gênica , Histidina/genética , Cinética , Molibdênio/química , Oligopeptídeos/genética , Oxirredutases/biossíntese , Oxirredutases/genética , Plasmídeos/genética , Plasmídeos/metabolismo , Sinais Direcionadores de Proteínas , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética
2.
Biochem Soc Trans ; 40(6): 1319-23, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23176475

RESUMO

Magnetotactic bacteria consist of a group of taxonomically, physiologically and morphologically diverse prokaryotes, with the singular ability to align with geomagnetic field lines, a phenomenon referred to as magnetotaxis. This magnetotactic property is due to the presence of iron-rich crystals embedded in lipidic vesicles forming an organelle called the magnetosome. Magnetosomes are composed of single-magnetic-domain nanocrystals of magnetite (Fe(3)O(4)) or greigite (Fe(3)S(4)) embedded in biological membranes, thereby forming a prokaryotic organelle. Four specific steps are described in this organelle formation: (i) membrane specialization, (ii) iron acquisition, (iii) magnetite (or greigite) biocrystallization, and (iv) magnetosome alignment. The formation of these magnetic crystals is a genetically controlled process, which is governed by enzyme-catalysed processes. On the basis of protein sequence analysis of genes known to be involved in magnetosome formation in Magnetospirillum magneticum AMB-1, we have identified a subset of three membrane-associated or periplasmic proteins containing a double cytochrome c signature motif CXXCH: MamE, MamP and MamT. The presence of these proteins suggests the existence of an electron-transport chain inside the magnetosome, contributing to the process of biocrystallization. We have performed heterologous expression in E. coli of the cytochrome c motif-containing domains of MamE, MamP and MamT. Initial biophysical characterization has confirmed that MamE, MamP and MamT are indeed c-type cytochromes. Furthermore, determination of redox potentials for this new family of c-type cytochromes reveals midpoint potentials of -76 and -32 mV for MamP and MamE respectively.


Assuntos
Magnetossomos/metabolismo , Magnetospirillum/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalização , Grupo dos Citocromos c/química , Grupo dos Citocromos c/genética , Grupo dos Citocromos c/metabolismo , Transporte de Elétrons , Magnetossomos/genética , Magnetossomos/fisiologia , Magnetospirillum/metabolismo , Magnetospirillum/fisiologia , Dados de Sequência Molecular , Oxirredução , Estrutura Terciária de Proteína
3.
J Bacteriol ; 192(5): 1238-48, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20038586

RESUMO

A spontaneous mutant of Rhodobacter sphaeroides f. sp. denitrificans IL-106 was found to excrete a large amount of a red compound identified as coproporphyrin III, an intermediate in bacteriochlorophyll and heme synthesis. The mutant, named PORF, is able to grow under phototrophic conditions but has low levels of intracellular cysteine and glutathione and overexpresses the cysteine synthase CysK. The expression of molybdoenzymes such as dimethyl sulfoxide (DMSO) and nitrate reductases is also affected under certain growth conditions. Excretion of coproporphyrin and overexpression of CysK are not directly related but were both found to be consequences of a diminished synthesis of the key metabolite S-adenosylmethionine (SAM). The wild-type phenotype is restored when the gene metK encoding SAM synthetase is supplied in trans. The metK gene in the mutant strain has a mutation leading to a single amino acid change (H145Y) in the encoded protein. This point mutation is responsible for a 70% decrease in intracellular SAM content which probably affects the activities of numerous SAM-dependent enzymes such as coproporphyrinogen oxidase (HemN); uroporphyrinogen III methyltransferase (CobA), which is involved in siroheme synthesis; and molybdenum cofactor biosynthesis protein A (MoaA). We propose a model showing that the attenuation of the activities of SAM-dependent enzymes in the mutant could be responsible for the coproporphyrin excretion, the low cysteine and glutathione contents, and the decrease in DMSO and nitrate reductase activities.


Assuntos
Coproporfirinas/metabolismo , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Mutação de Sentido Incorreto , Mutação Puntual , Rhodobacter sphaeroides/enzimologia , Rhodobacter sphaeroides/genética , Compostos de Sulfidrila/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Cisteína/metabolismo , Análise Mutacional de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , Teste de Complementação Genética , Glutationa/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Rhodobacter sphaeroides/metabolismo , S-Adenosilmetionina/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
4.
Nat Microbiol ; 4(7): 1088-1095, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31036911

RESUMO

Mutualistic symbioses are often a source of evolutionary innovation and drivers of biological diversification1. Widely distributed in the microbial world, particularly in anoxic settings2,3, they often rely on metabolic exchanges and syntrophy2,4. Here, we report a mutualistic symbiosis observed in marine anoxic sediments between excavate protists (Symbiontida, Euglenozoa)5 and ectosymbiotic Deltaproteobacteria biomineralizing ferrimagnetic nanoparticles. Light and electron microscopy observations as well as genomic data support a multi-layered mutualism based on collective magnetotactic motility with division of labour and interspecies hydrogen-transfer-based syntrophy6. The guided motility of the consortia along the geomagnetic field is allowed by the magnetic moment of the non-motile ectosymbiotic bacteria combined with the protist motor activity, which is a unique example of eukaryotic magnetoreception7 acquired by symbiosis. The nearly complete deltaproteobacterial genome assembled from a single consortium contains a full magnetosome gene set8, but shows signs of reduction, with the probable loss of flagellar genes. Based on the metabolic gene content, the ectosymbiotic bacteria are anaerobic sulfate-reducing chemolithoautotrophs that likely reduce sulfate with hydrogen produced by hydrogenosome-like organelles6 underlying the plasma membrane of the protist. In addition to being necessary hydrogen sinks, ectosymbionts may provide organics to the protist by diffusion and predation, as shown by magnetosome-containing digestive vacuoles. Phylogenetic analyses of 16S and 18S ribosomal RNA genes from magnetotactic consortia in marine sediments across the Northern and Southern hemispheres indicate a host-ectosymbiont specificity and co-evolution. This suggests a historical acquisition of magnetoreception by a euglenozoan ancestor from Deltaproteobacteria followed by subsequent diversification. It also supports the cosmopolitan nature of this type of symbiosis in marine anoxic sediments.


Assuntos
Deltaproteobacteria/fisiologia , Euglenozoários/microbiologia , Euglenozoários/fisiologia , Campos Magnéticos , Simbiose , Anaerobiose , Coevolução Biológica , Deltaproteobacteria/classificação , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Euglenozoários/classificação , Euglenozoários/ultraestrutura , Eucariotos , Óxido Ferroso-Férrico/metabolismo , Genoma Bacteriano/genética , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Hidrogênio/metabolismo , Locomoção/fisiologia , Magnetossomos/genética , Magnetossomos/ultraestrutura , Oceanos e Mares , Filogenia , RNA Ribossômico/genética , Especificidade da Espécie
5.
PLoS One ; 6(6): e21442, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21738665

RESUMO

Enzymes are versatile catalysts in laboratories and on an industrial scale; improving their immobilization would be beneficial to broadening their applicability and ensuring their (re)use. Lipid-coated nano-magnets produced by magnetotactic bacteria are suitable for a universally applicable single-step method of enzyme immobilization. By genetically functionalizing the membrane surrounding these magnetite particles with a phosphohydrolase, we engineered an easy-to-purify, robust and recyclable biocatalyst to degrade ethyl-paraoxon, a commonly used pesticide. For this, we genetically fused the opd gene from Flavobacterium sp. ATCC 27551 encoding a paraoxonase to mamC, an abundant protein of the magnetosome membrane in Magnetospirillum magneticum AMB-1. The MamC protein acts as an anchor for the paraoxonase to the magnetosome surface, thus producing magnetic nanoparticles displaying phosphohydrolase activity. Magnetosomes functionalized with Opd were easily recovered from genetically modified AMB-1 cells: after cellular disruption with a French press, the magnetic nanoparticles are purified using a commercially available magnetic separation system. The catalytic properties of the immobilized Opd were measured on ethyl-paraoxon hydrolysis: they are comparable with the purified enzyme, with K(m) (and k(cat)) values of 58 µM (and 178 s(-1)) and 43 µM (and 314 s(-1)) for the immobilized and purified enzyme respectively. The Opd, a metalloenzyme requiring a zinc cofactor, is thus properly matured in AMB-1. The recycling of the functionalized magnetosomes was investigated and their catalytic activity proved to be stable over repeated use for pesticide degradation. In this study, we demonstrate the easy production of functionalized magnetic nanoparticles with suitably genetically modified magnetotactic bacteria that are efficient as a reusable nanobiocatalyst for pesticides bioremediation in contaminated effluents.


Assuntos
Biodegradação Ambiental , Magnetossomos/metabolismo , Magnetospirillum/metabolismo , Nanopartículas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA