Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Pediatr Radiol ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39085531

RESUMO

Over the last decades, magnetic resonance imaging (MRI) has emerged as a valuable adjunct to prenatal ultrasound for evaluating fetal malformations. Several radiological societies advocate for standardised and structured reporting practices to enhance the uniformity of imaging language. Compared to narrative formats, standardised and structured reports offer enhanced content quality, minimise reader variability, have the potential to save reporting time, and streamline the communication between specialists by employing a shared lexicon. Structured reporting holds promise for mitigating medico-legal liability, while also facilitating rigorous scientific data analyses and the development of standardised databases. While structured reporting templates for fetal MRI are already in use in some centres, specific recommendations and/or guidelines from international societies are scarce in the literature. The purpose of this paper is to propose a standardised and structured reporting template for fetal MRI to assist radiologists, particularly those with less experience, in delivering systematic reports. Additionally, the paper aims to offer an overview of the anatomical structures that necessitate reporting and the prevalent normative values for fetal biometrics found in current literature.

2.
IEEE Trans Pattern Anal Mach Intell ; 46(5): 3784-3795, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38198270

RESUMO

Deep learning models for medical image segmentation can fail unexpectedly and spectacularly for pathological cases and images acquired at different centers than training images, with labeling errors that violate expert knowledge. Such errors undermine the trustworthiness of deep learning models for medical image segmentation. Mechanisms for detecting and correcting such failures are essential for safely translating this technology into clinics and are likely to be a requirement of future regulations on artificial intelligence (AI). In this work, we propose a trustworthy AI theoretical framework and a practical system that can augment any backbone AI system using a fallback method and a fail-safe mechanism based on Dempster-Shafer theory. Our approach relies on an actionable definition of trustworthy AI. Our method automatically discards the voxel-level labeling predicted by the backbone AI that violate expert knowledge and relies on a fallback for those voxels. We demonstrate the effectiveness of the proposed trustworthy AI approach on the largest reported annotated dataset of fetal MRI consisting of 540 manually annotated fetal brain 3D T2w MRIs from 13 centers. Our trustworthy AI method improves the robustness of four backbone AI models for fetal brain MRIs acquired across various centers and for fetuses with various brain abnormalities.


Assuntos
Algoritmos , Inteligência Artificial , Imageamento por Ressonância Magnética , Feto/diagnóstico por imagem , Encéfalo/diagnóstico por imagem
3.
Children (Basel) ; 10(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38136068

RESUMO

Thanks to its non-invasive nature and high-resolution imaging capabilities, magnetic resonance imaging (MRI) is a valuable diagnostic tool for pediatric patients. However, the fear and anxiety experienced by young children during MRI scans often result in suboptimal image quality and the need for sedation/anesthesia. This study aimed to evaluate the effect of a smartphone application called COSMO@home to prepare children for MRI scans to reduce the need for sedation or general anesthesia. The COSMO@home app was developed incorporating mini-games and an engaging storyline to prepare children for learning goals related to the MRI procedure. A multicenter study was conducted involving four hospitals in Belgium. Eligible children aged 4-10 years were prepared with the COSMO@home app at home. Baseline, pre-scan, and post-scan questionnaires measured anxiety evolution in two age groups (4-6 years and 7-10 years). Eighty-two children participated in the study, with 95% obtaining high-quality MRI images. The app was well-received by children and parents, with minimal technical difficulties reported. In the 4-6-year-old group (N = 33), there was a significant difference between baseline and pre-scan parent-reported anxiety scores, indicating an increase in anxiety levels prior to the scan. In the 7-10-year-old group (N = 49), no significant differences were observed between baseline and pre-scan parent-reported anxiety scores. Overall, the COSMO@home app proved to be useful in preparing children for MRI scans, with high satisfaction rates and successful image outcomes across different hospitals. The app, combined with minimal face-to-face guidance on the day of the scan, showed the potential to replace or assist traditional face-to-face training methods. This innovative approach has the potential to reduce the need for sedation or general anesthesia during pediatric MRI scans and its associated risks and improve patient experience.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA