Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biol Cell ; 116(8): e2400013, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38881160

RESUMO

Male infertility is a significant global issue affecting 60-80 million people, with 40%-50% of cases linked to male issues. Exposure to radiation, drugs, sickness, the environment, and oxidative stress may result in testicular degeneration. Carbohydrate-based polymers (CBPs) restore testis differentiation and downregulate apoptosis genes. CBP has biodegradability, low cost, and wide availability, but is at risk of contamination and variations. CBP shows promise in wound healing, but more research is required before implementation in healthcare. Herein, we discuss the recent advances in engineering applications of CBP employed as scaffolds, drug delivery systems, immunomodulation, and stem cell therapy for testicular regeneration. Moreover, we emphasize the promising challenges warranted for future perspectives.


Assuntos
Polímeros , Testículo , Humanos , Masculino , Animais , Polímeros/química , Regeneração , Carboidratos/química , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Sistemas de Liberação de Medicamentos
2.
Mol Biol Rep ; 51(1): 26, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38127201

RESUMO

Extracellular vesicles (EVs) are membrane-derived messengers which have been playing an important role in the inflammation and pathogenesis of lung diseases. EVs contain varieties of DNA, RNA, and membrane receptors through which they work as a delivery system for bioactive molecules as well as intracellular communicators. EV signaling mediates tumor progression and metastasis. EVs are linked with many diseases and perform a diagnostic role in lung injury and inflammation so are used to diagnose the severity of diseases. EVs containing a variety of biomolecules communicate with the recipient cells during pathophysiological mechanisms thereby acquiring the attention of clinicians toward the diagnostic and therapeutic potential of EVs in different lung diseases. In this review, we summarize the role of EVs in inflammation with an emphasis on their potential as a novel candidate in the diagnostics and therapeutics of chronic obstructive pulmonary disease, asthma, and sarcoidosis.


Assuntos
Vesículas Extracelulares , Lesão Pulmonar , Doença Pulmonar Obstrutiva Crônica , Humanos , Inflamação , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/terapia , Pulmão
3.
Biol Futur ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717710

RESUMO

Tripartite motif (TRIM) family members participate in a variety of cellular activities, such as intracellular signaling, development, cellular death, protein quality control, immunological defense, waste degradation, and the emergence of cancer. These proteins usually act as E3 ubiquitin ligase. The final line of resistance against infectious viruses is a cytosolic ubiquitin ligase and antibody receptor called TRIM containing 21. TRIM21, a protein with a tripartite structure, has been linked to autoimmune erythematosus, Sjogren's disorder, and innate immunity. TRIM21 may either promote the formation of specific cancer-activating proteins, resulting in their proteasomal degradation, or it may do neither, depending on the kind of cancer and cancer-causing trigger. The current research has shown that the antiviral action of TRIM mostly depends on their role as E3-ubiquitin ligases and a significant portion of the TRIM family mediates the transmission of innate immune cell signals and the subsequent production of cytokines. We highlighted the function of TRIM family members in various inflammatory diseases.

4.
Front Cell Dev Biol ; 12: 1384047, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827527

RESUMO

Autophagy is an evolutionarily conserved cellular recycling process that maintains cellular homeostasis. Despite extensive research in endocrine contexts, the role of autophagy in ovarian and testicular steroidogenesis remains elusive. The significant role of autophagy in testosterone production suggests potential treatments for conditions like oligospermia and azoospermia. Further, influence of autophagy in folliculogenesis, ovulation, and luteal development emphasizes its importance for improved fertility and reproductive health. Thus, investigating autophagy in gonadal cells is clinically significant. Understanding these processes could transform treatments for endocrine disorders, enhancing reproductive health and longevity. Herein, we provide the functional role of autophagy in testicular and ovarian steroidogenesis to date, highlighting its modulation in testicular steroidogenesis and its impact on hormone synthesis, follicle development, and fertility therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA