Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biometeorol ; 68(6): 1213-1228, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38538982

RESUMO

Crop simulation models are valuable tools for decision making regarding evaluation and crop improvement under different field conditions. CSM-CROPGRO model integrates genotype, environment and crop management portfolios to simulate growth, development and yield. Modeling the safflower response to varied climate regimes are needed to strengthen its productivity dynamics. The main objective of the study was to evaluate the performance of DSSAT-CSM-CROPGRO-Safflower (Version 4.8.2) under diverse climatic conditions. The model was calibrated using the field observations for phenology, biomass and safflower grain yield (SGY) of the year 2016-17. Estimation of genetic coefficients was performed using GLUE (Genetic Likelihood Uncertainty Estimation) program. Simulated results for days to flowering, maturity, biomass at flowering and maturity and SGY were predicted reasonably with good statistical indices. Model evaluation results elucidate phenological events with low root mean square error (6.32 and 6.52) and high d-index (0.95 and 0.96) for days to flowering and maturity respectively for all genotypes and climate conditions. Fair prediction of safflower biomass at flowering and maturity showed low RMSE (887.3 and 564.3 kg ha-1) and high d-index (0.67 and 0.93) for the studied genotypes across the environments. RMSE for validated safflower grain yield (101.8 kg ha-1) and d-index (0.95) depicted that model outperformed for all genotypes and growing conditions. Longer appropriate growing conditions at NARC-Islamabad took optimal duration to assimilate photosynthetic products lead to higher grain yield. Safflower resilience to different environments showed that it can be used as an alternate crop for different agroecological regions. Furthermore, CROPGRO-Safflower model can be used as tool to further evaluate inclusion of safflower in the existing cropping systems of studied regions.


Assuntos
Biomassa , Carthamus tinctorius , Carthamus tinctorius/crescimento & desenvolvimento , Carthamus tinctorius/genética , Simulação por Computador , Modelos Teóricos , Genótipo , Flores/crescimento & desenvolvimento , Flores/genética , Clima
2.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474590

RESUMO

Lung cancer has the lowest survival rate due to its late-stage diagnosis, poor prognosis, and intra-tumoral heterogeneity. These factors decrease the effectiveness of treatment. They release chemokines and cytokines from the tumor microenvironment (TME). To improve the effectiveness of treatment, researchers emphasize personalized adjuvant therapies along with conventional ones. Targeted chemotherapeutic drug delivery systems and specific pathway-blocking agents using nanocarriers are a few of them. This study explored the nanocarrier roles and strategies to improve the treatment profile's effectiveness by striving for TME. A biofunctionalized nanocarrier stimulates biosystem interaction, cellular uptake, immune system escape, and vascular changes for penetration into the TME. Inorganic metal compounds scavenge reactive oxygen species (ROS) through their photothermal effect. Stroma, hypoxia, pH, and immunity-modulating agents conjugated or modified nanocarriers co-administered with pathway-blocking or condition-modulating agents can regulate extracellular matrix (ECM), Cancer-associated fibroblasts (CAF),Tyro3, Axl, and Mertk receptors (TAM) regulation, regulatory T-cell (Treg) inhibition, and myeloid-derived suppressor cells (MDSC) inhibition. Again, biomimetic conjugation or the surface modification of nanocarriers using ligands can enhance active targeting efficacy by bypassing the TME. A carrier system with biofunctionalized inorganic metal compounds and organic compound complex-loaded drugs is convenient for NSCLC-targeted therapy.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , c-Mer Tirosina Quinase , Microambiente Tumoral , Neoplasias/tratamento farmacológico
3.
Saudi Pharm J ; 32(3): 101971, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38357701

RESUMO

Triple-negative breast cancer (TNBC) comprises 10 % to 20 % of breast cancer, however, it is more dangerous than other types of breast cancer, because it lacks druggable targets, such as the estrogen receptors (ER) and the progesterone receptor (PR), and has under expressed receptor tyrosine kinase, ErbB2. Present targeted therapies are not very effective and other choices include invasive procedures like surgery or less invasive ones like radiotherapy and chemotherapy. This study investigated the potential anticancer activity of some novel quinazolinone derivatives that were designed on the structural framework of two approved anticancer drugs, Ispinesib (KSP inhibitor) and Idelalisib (PI3Kδ inhibitor), to find out solutions for TNBC. All the designed derivatives (3a-l) were subjected to extra precision molecular docking and were synthesized and spectrally characterized. In vitro enzyme inhibition assay of compounds (3a, 3b, 3e, 3 g and 3 h) revealed their nanomolar inhibitory potential against the anticancer targets, KSP and PI3Kδ. Using MTT assay, the cytotoxic potential of compounds 3a, 3b and 3e were found highest against MDA-MB-231 cells with an IC50 of 14.51 µM, 16.27 µM, and 9.97 µM, respectively. Remarkably, these compounds were recorded safe against the oral epithelial normal cells with an IC50 values of 293.60 µM, 261.43 µM, and 222 µM, respectively. The anticancer potential of these compounds against MDA-MB-231 cells was revealed to be associated with their apoptotic activity. This was established by examination with the inverted microscope that revealed the appearance of various apoptotic features like cell shrinkage, apoptotic bodies, and membrane blebbing. Using flow cytometry, the Annexin V/PI-stained cancer cells showed an increase in early and late apoptotic cells. In addition, DNA fragmentation was revealed to occur after treatment with the tested compounds by gel electrophoresis. The relative gene expression of pro-apoptotic and anti-apoptotic genes revealed an overexpression of the P53 and BAX genes and a downregulation of the BCL-2 gene by real-time PCR. So, this work proved that compounds 3a, 3b, and 3e could be developed as anticancer candidates, via their P53-dependent apoptotic activity.

4.
Exp Eye Res ; 236: 109650, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37734426

RESUMO

Oxidative stress (OS) is a cytopathic outcome of excessively generated reactive oxygen species (ROS), down regulated antioxidant defense signaling pathways, and the imbalance between the produced radicals and their clearance. It plays a role in the genesis of several illnesses, especially hyperglycemia and its effects. Diabetic retinal illness, a micro vascular side effect of the condition, is the prime reason of diabetic related blindness. The OS (directly or indirectly) is associated with diabetic retinopathy (DR) and related consequences. The OS is responsible to induce and interfere the metabolic signaling pathways to enhance influx of the polyol cascades and hexosamine pathways, stimulate Protein Kinase-C (PKC) variants, and accumulate advanced glycation end products (AGEs). Additionally, the inequity between the scavenging and generation of ROS is caused by the epigenetic alteration caused by hyperglycemia that suppresses the antioxidant defense system. Induced by an excessive buildup of ROS, retinal changes in structure and function include mitochondrial damage, cellular death, inflammation, and lipid peroxidation. Therefore, it is crucial to comprehend and clarify the mechanisms connected to oxidative stress that underlie the development of DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Hiperglicemia , Humanos , Retinopatia Diabética/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Hiperglicemia/metabolismo , Produtos Finais de Glicação Avançada/metabolismo
5.
Chem Biodivers ; 20(11): e202301169, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37833241

RESUMO

This article emphasizes the importance of prodrugs and their diverse spectrum of effects in the field of developing novel drugs for a variety of biological applications. Prodrugs are chemicals that are supplied inactively, but then go through enzymatic and chemical transformation in vivo to release the active parent medication that can have the desired pharmacological effect. By adding an inactive chemical moiety, prodrugs are improved in a number of ways that contribute to their potency and durability. For the purpose of illustrating the usefulness of the prodrug approach, this review covers examples of prodrugs that have been made available or are now undergoing human trials. Additionally, it included lists of the most common functional groups, carrier linkers, and reactive chemicals that can be used to create prodrugs. The current study also provides a brief introduction, several chemical methods and modifications for creating prodrugs and mutual prodrugs, as well as an explanation of recent advancements and difficulties in the field of prodrug design. The primary chemical carriers employed in the creation of prodrugs, such as esters, amides, imides, NH-acidic carriers, amines, alcohols, carbonyl, carboxylic, and azo-linkages, are also discussed. This review also discusses glycosidic and triglyceride mutually activated prodrugs, which aim to deliver the drugs after bioconversion at the intended site of action. The article also discusses the extensive chemistry and wide variety of applications of recently approved prodrugs, such as antibacterial, anti-inflammatory, cardiovascular, antiplatelet, antihypertensive, atherosclerotic, antiviral, etc. In order to illustrate the prodrug and mutual drug concept's various applications and highlight its many triumphs in overcoming the formulation and delivery of problematic pharmaceuticals, this work represents a thorough guide that includes the synthetic moiety for the reader.


Assuntos
Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Química Farmacêutica , Desenho de Fármacos , Amidas , Aminas
6.
Molecules ; 29(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38202650

RESUMO

The present investigation reports the efficient multistep synthesis of 1-(1,3-dioxoisoindolin-2-yl)-3-aryl urea analogs (7a-f) in good yields. All the 1-(1,3-dioxoisoindolin-2-yl)-3-aryl urea analogs (7a-f) were characterized by spectroscopic techniques. Five among the six compounds were tested against 56 cancer cell lines at 10 µM as per the standard protocol. 1-(4-Bromophenyl)-3-(1,3-dioxoisoindolin-2-yl)urea (7c) exhibited moderate but significant anticancer activity against EKVX, CAKI-1, UACC-62, MCF7, LOX IMVI, and ACHN with percentage growth inhibitions (PGIs) of 75.46, 78.52, 80.81, 83.48, 84.52, and 89.61, respectively. Compound 7c was found to exhibit better anticancer activity than thalidomide against non-small cell lung, CNS, melanoma, renal, prostate, and breast cancer cell lines. It was also found to exhibit superior anticancer activity against melanoma cancer compared to imatinib. Among the tested compounds, the 4-bromosubstitution (7c) on the phenyl ring demonstrated good anticancer activity. Docking scores ranging from -6.363 to -7.565 kcal/mol were observed in the docking studies against the molecular target EGFR. The ligand 7c displayed an efficient binding against the EGFR with a docking score of -7.558 kcal/mol and displayed an H-bond interaction with Lys745 and the carbonyl functional group. Compound 7c demonstrated a moderate inhibition of EGFR with an IC50 of 42.91 ± 0.80 nM, in comparison to erlotinib (IC50 = 26.85 ± 0.72 nM), the standard drug. The antioxidant potential was also calculated for the compounds (7a-f), which exhibited good to low activity. 1-(2-Methoxyphenyl)-3-(1,3-dioxoisoindolin-2-yl)urea (7f) and 1-(4-Methoxyphenyl)-3-(1,3-dioxoisoindolin-2-yl)urea (7d) demonstrated significant antioxidant activity with IC50 values of 15.99 ± 0.10 and 16.05 ± 0.15 µM, respectively. The 2- and 4-methoxysubstitutions on the N-phenyl ring showed good antioxidant activity among the series of compounds (7a-f). An in silico ADMET prediction studies showed the compounds' adherence to Lipinski's rule of five: they were free from toxicities, including mutagenicity, cytotoxicity, and immunotoxicity, but not for hepatotoxicity. The toxicity prediction demonstrated LD50 values between 1000 and 5000 mg/Kg, putting the compounds either in class IV or class V toxicity classes. Our findings might create opportunities for more advancements in cancer therapeutics.


Assuntos
Antioxidantes , Melanoma , Masculino , Humanos , Antioxidantes/farmacologia , Analgésicos Opioides , Células MCF-7 , Receptores ErbB
7.
Molecules ; 28(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37630338

RESUMO

We report herein the synthesis, docking studies and biological evaluation of a series of new 4-chloro-2-((5-aryl-1,3,4-oxadiazol-2-yl)amino)phenol analogues (6a-h). The new compounds were designed based on the oxadiazole-linked aryl core of tubulin inhibitors of IMC-038525 and IMC-094332, prepared in five steps and further characterized via spectral analyses. The anticancer activity of the compounds was assessed against several cancer cell lines belonging to nine different panels as per National Cancer Institute (NCI US) protocol. 4-Chloro-2-((5-(3,4,5-trimethoxyphenyl)-1,3,4-oxadiazol-2-yl)amino)phenol (6h) demonstrated significant anticancer activity against SNB-19 (PGI = 65.12), NCI-H460 (PGI = 55.61), and SNB-75 (PGI = 54.68) at 10 µM. The compounds were subjected to molecular docking studies against the active site of the tubulin-combretastatin A4 complex (PDB ID: 5LYJ); they displayed efficient binding and ligand 4h (with docking score = -8.030 kcal/mol) lay within the hydrophobic cavity surrounded by important residues Leu252, Ala250, Leu248, Leu242, Cys241, Val238, Ile318, Ala317, and Ala316. Furthermore, the antibacterial activity of some of the compounds was found to be promising. 4-Chloro-2-((5-(4-nitrophenyl)-1,3,4-oxadiazol-2-yl)amino)phenol (6c) displayed the most promising antibacterial activity against both Gram-negative as well as Gram-positive bacteria with MICs of 8 µg/mL and a zone of inhibition ranging from 17.0 ± 0.40 to 17.0 ± 0.15 mm at 200 µg/mL; however, the standard drug ciprofloxacin exhibited antibacterial activity with MIC values of 4 µg/mL.


Assuntos
Fenol , Fenóis , Simulação de Acoplamento Molecular , Fenóis/farmacologia , Antibacterianos/farmacologia
8.
Molecules ; 28(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37570875

RESUMO

Cancer is a progressive disease of multi-factorial origin that has risen worldwide, probably due to changes in lifestyle, food intake, and environmental changes as some of the reasons. Skin cancer can be classified into melanomas from melanocytes and nonmelanoma skin cancer (NMSC) from the epidermally-derived cell. Together it constitutes about 95% of skin cancer. Basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (CSCC) are creditworthy of 99% of NMSC due to the limited accessibility of conventional formulations in skin cancer cells of having multiple obstacles in treatment reply to this therapeutic regime. Despite this, it often encounters erratic bioavailability and absorption to the target. Nanoparticles developed through nanotechnology platforms could be the better topical skin cancer therapy option. To improve the topical delivery, the nano-sized delivery system is appropriate as it fuses with the cutaneous layer and fluidized membrane; thus, the deeper penetration of therapeutics could be possible to reach the target spot. This review briefly outlooks the various nanoparticle preparations, i.e., liposomes, niosomes, ethosomes, transferosomes, transethosomes, nanoemulsions, and nanoparticles technologies tested into skin cancer and impede their progress tend to concentrate in the skin layers. Nanocarriers have proved that they can considerably boost medication bioavailability, lowering the frequency of dosage and reducing the toxicity associated with high doses of the medication.

9.
Mol Biol Rep ; 49(11): 11101-11111, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36109416

RESUMO

The symptoms of ageing are somewhat different and can lead to the altered role of the cardiovascular system at the levels of genetic, biochemical, tissue, organ, and systems. Ageing is an autonomous cardiovascular risk factor. In the ageing rat heart, oxidative and inflammatory stress, immune cell infiltration, increasing myeloperoxidase function, elevated caspase-3 activity, and protein fibronectins were detected and associated with ageing and cardiovascular disease. The intracellular Ca2 + homeostasis disturbed in an older heart dramatically increases cardiomyopathy, atherosclerosis, stroke, ischemia, myocardial infarction, hypertrophy, remodelling, and hypertension. Evidence shows that suppression of Wnt/ß signals prevents cardiovascular dysfunction, such as remodelling, high blood pressure, and excessive overload stress. However, one study has shown that the pharmacological disruption of Wnt-ß-catenin by decreasing expression of α-smooth muscle actin, fibronectin and collagen I proteins attenuates angiotensin II mediated hypertension cardiac fibrosis. Thus, this review examined the impacts of calcium overload and age-related diseases, including cardiovascular. Energy dysregulation, calcium overloading, and mitochondrial dysfunction are the main activities causing cardiovascular disease linked with age. Therefore, the current study explores that age-associated cardiovascular disease has triggered the WNT/ß-catenin pathway, and pharmacological inhibition can delay pathological changes by attenuating calcium dyshomeostasis.


Assuntos
Doenças Cardiovasculares , Hipertensão , Ratos , Animais , beta Catenina/metabolismo , Cálcio/metabolismo , Doenças Cardiovasculares/metabolismo , Via de Sinalização Wnt , Envelhecimento/metabolismo , Hipertensão/metabolismo , Miocárdio/metabolismo
10.
J Nat Prod ; 85(10): 2406-2412, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36215657

RESUMO

The goal of this study was to determine the effect of hirsutidin on ethanol-induced stomach ulcers in rats. Rats (n = 24 rats/group) were separated at random into the following groups: normal saline-treated (normal control), ethanol-treated (ethanol control), 10 mg/kg hirsutidin + ethanol-treated (hirsutidin 10), and 20 mg/kg hirsutidin + ethanol-treated (hirsutidin 20). All the groups received the respective treatment orally for 7 days. On day 7, i.e., after 24 h of fasting, except for the normal control group, all the groups orally received 5 mL/kg of ethanol. Four hours later, rats were anaesthetized, serum was isolated from the blood, and biochemical tests were performed. The stomach tissue was utilized for ulcer grading, histology, and biochemical analysis. The rats developed stomach acidity and ulcers after being given ethanol based on increased ulcer score, disturbed cellular architecture, increased oxidative stress, myeloperoxidase and decreased endogenous antioxidants, and nitric oxide and prostaglandin E2 concentration. Ethanol-treated rats also displayed increased tumor necrosis factor-α, aspartate aminotransferase, alanine transaminase, alkaline phosphatase, and inflammatory cytokines. The treatment with hirsutidin protected and significantly restored all serum parameters in ethanol-induced stomach ulcers and may have antiulcer activity.


Assuntos
Antiulcerosos , Úlcera Gástrica , Ratos , Animais , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antocianinas/farmacologia , Úlcera/tratamento farmacológico , Úlcera/patologia , Mucosa Gástrica/patologia , Ratos Wistar , Antiulcerosos/farmacologia , Antiulcerosos/uso terapêutico , Etanol
11.
Biotechnol Appl Biochem ; 69(5): 2205-2221, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34775646

RESUMO

The present research work describes development of dual drug-loaded lipid-polymer hybrid nanoparticles (LPHNPs) of anticancer therapeutics for the management of colon cancer. The epidermal growth factor (EGF)-functionalized LPHNPs coloaded with 5-fluorouracil (FU) and sulforaphane (SFN) were prepared by one-step nanoprecipitation method. Box-Behnken design was applied for optimizing the material attributes and process parameters. The optimized LPHNPs revealed particle size 198 nm, polydispersity index 0.3, zeta potential -25.3 mV, and drug loading efficiency 19-20.3% for 5-FU and SFN, respectively. EGF functionalization on LPHNPs was confirmed from positive magnitude of zeta potential to 21.3 mV as compared with the plain LPHNPs. In vitro drug release performance indicated sustained and non-Fickian mechanism release nature of the drugs from LPHNPs. Anticancer activity evaluation in HCT-15 colon cancer cells showed significant reduction (p < 0.001) in the cell growth and cytotoxicity of the investigated drugs from various treatments in the order: EGF-functionalized LPHNPs > plain LPHNPs > free drug suspensions. Overall, the research work corroborated improved treatment efficacy of EGF-functionalized LPHNPs for delivering chemotherapeutic agents for the management of colon carcinoma.


Assuntos
Carcinoma , Neoplasias do Colo , Nanopartículas , Humanos , Polímeros , Disponibilidade Biológica , Fluoruracila/farmacologia , Fator de Crescimento Epidérmico , Lipídeos , Sobrevivência Celular , Tamanho da Partícula , Neoplasias do Colo/tratamento farmacológico , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/métodos
12.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36430579

RESUMO

Emotional stress is believed to be associated with increased tumor progression. Stress-induced epigenetic modifications can contribute to the severity of disease and poor prognosis in cancer patients. The current study aimed to investigate the expression profiles along with the prognostic significance of psychological stress-related genes in metastatic breast cancer patients, to rationalize the molecular link between emotional stress and cancer progression. We profiled the expression of selected stress-associated genes (5-HTT, NR3C1, OXTR, and FKBP5) in breast cancer including the stress evaluation of all participants using the Questionnaire on Distress in Cancer Patients-short form (QSC-R10). A survival database, the Kaplan-Meier Plotter, was used to explore the prognostic significance of these genes in breast cancer. Our results showed relatively low expressions of 5-HTT (p = 0.02) and OXTR (p = 0.0387) in metastatic breast cancer patients as compared to the non-metastatic group of patients. The expression of NR3C1 was low in tumor grade III as compared to grade II (p = 0.04). Additionally, the expression of NR3C1 was significantly higher in patients with positive estrogen receptor status. However, no significant difference was found regarding FKBP5 expression in breast cancer. The results suggest a potential implication of these genes in breast cancer pathology and prognosis.


Assuntos
Neoplasias da Mama , Angústia Psicológica , Humanos , Feminino , Neoplasias da Mama/metabolismo , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , RNA Mensageiro/genética
13.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293326

RESUMO

The mammalian target of rapamycin (mTOR) is the major controller of a number of important cellular activities, including protein synthesis, cell expansion, multiplication, autophagy, lysosomal function, and cellular metabolism. When mTOR interacts with specific adaptor proteins, it forms two complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). The mTOR signaling system regulates gene transcription and protein manufacturing to control proliferation of cell, differentiation of immune cell, and tumor metabolism. Due to its vital role in case of microbial infections, inflammations and cancer development and progression, mTOR has been considered as a key therapeutic target for the development of targeted medication. As autophagy dysfunction is linked to changes in both innate and adaptive immune responses, bacterial clearance defects, and goblet and Paneth cell malfunction, all of these changes are linked to inflammatory bowel diseases (IBD) and colorectal cancer (CRC) pathogenesis. Preclinical and clinical data have shown that the inhibition and induction of autophagy have significant potential to be translated into the clinical applications. In IBD and several CRC models, mTORC1 inhibitors have been found effective. In the recent years, a number of novel mTOR inhibitors have been investigated in clinical trials, and a number of drugs have shown considerably enhanced efficacy when combined with mTOR inhibitors. The future developments in the mTOR targeting medications can benefit patients in individualized therapy. Advanced and innovative medicines that are more effective and have lower drug resistance are still in high demand. New findings could be relevant in medicine development, pharmacological modification, or future mTOR inhibitor research. Therefore, the goal of this review is to present a comprehensive account of current developments on the mTOR pathway and its inhibitors, with an emphasis on the management of microbial infections, the treatment of inflammatory bowel disease, and the management of colon cancer.


Assuntos
Neoplasias Colorretais , Doenças Inflamatórias Intestinais , Humanos , Inibidores de MTOR , Serina-Treonina Quinases TOR , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Neoplasias Colorretais/patologia
14.
Molecules ; 27(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36364431

RESUMO

Neurodegenerative diseases exert an overwhelming socioeconomic burden all around the globe. They are mainly characterized by modified protein accumulation that might trigger various biological responses, including oxidative stress, inflammation, regulation of signaling pathways, and excitotoxicity. These disorders have been widely studied during the last decade in the hopes of developing symptom-oriented therapeutics. However, no definitive cure has yet been discovered. Tea is one of the world's most popular beverages. The same plant, Camellia Sinensis (L.).O. Kuntze, is used to make green, black, and oolong teas. Green tea has been most thoroughly studied because of its anti-cancer, anti-obesity, antidiabetic, anti-inflammatory, and neuroprotective properties. The beneficial effect of consumption of tea on neurodegenerative disorders has been reported in several human interventional and observational studies. The polyphenolic compounds found in green tea, known as catechins, have been demonstrated to have many therapeutic effects. They can help in preventing and, somehow, treating neurodegenerative diseases. Catechins show anti-inflammatory as well as antioxidant effects via blocking cytokines' excessive production and inflammatory pathways, as well as chelating metal ions and free radical scavenging. They may inhibit tau protein phosphorylation, amyloid beta aggregation, and release of apoptotic proteins. They can also lower alpha-synuclein levels and boost dopamine levels. All these factors have the potential to affect neurodegenerative disorders. This review will examine catechins' neuroprotective effects by highlighting their biological, pharmacological, antioxidant, and metal chelation abilities, with a focus on their ability to activate diverse cellular pathways in the brain. This review also points out the mechanisms of catechins in various neurodegenerative and cognitive diseases, including Alzheimer's, Parkinson's, multiple sclerosis, and cognitive deficit.


Assuntos
Camellia sinensis , Catequina , Doenças Neurodegenerativas , Humanos , Chá , Catequina/farmacologia , Catequina/uso terapêutico , Doenças Neurodegenerativas/metabolismo , Peptídeos beta-Amiloides/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Quelantes/uso terapêutico , Cognição
15.
Molecules ; 27(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35889451

RESUMO

The emergence of drug resistance and the limited number of approved antitubercular drugs prompted identification and development of new antitubercular compounds to cure Tuberculosis (TB). In this work, an attempt was made to identify potential natural compounds that target mycobacterial proteins. Three plant extracts (A. aspera, C. gigantea and C. procera) were investigated. The ethyl acetate fraction of the aerial part of A. aspera and the flower ash of C. gigantea were found to be effective against M. tuberculosis H37Rv. Furthermore, the GC-MS analysis of the plant fractions confirmed the presence of active compounds in the extracts. The Mycobacterium target proteins, i.e., available PDB dataset proteins and proteins classified in virulence, detoxification, and adaptation, were investigated. A total of ten target proteins were shortlisted for further study, identified as follows: BpoC, RipA, MazF4, RipD, TB15.3, VapC15, VapC20, VapC21, TB31.7, and MazF9. Molecular docking studies showed that ß-amyrin interacted with most of these proteins and its highest binding affinity was observed with Mycobacterium Rv1636 (TB15.3) protein. The stability of the protein-ligand complex was assessed by molecular dynamic simulation, which confirmed that ß-amyrin most firmly interacted with Rv1636 protein. Rv1636 is a universal stress protein, which regulates Mycobacterium growth in different stress conditions and, thus, targeting Rv1636 makes M. tuberculosis vulnerable to host-derived stress conditions.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Ácido Oleanólico , Antituberculosos/química , Antituberculosos/farmacologia , Proteínas de Choque Térmico , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia
16.
Molecules ; 27(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208955

RESUMO

The dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a novel, promising and emerging biological target for therapeutic intervention in neurodegenerative diseases, especially in Alzheimer's disease (AD). The molMall database, comprising rare, diverse and unique compounds, was explored for molecular docking-based virtual screening against the DYRK1A protein, in order to find out potential inhibitors. Ligands exhibiting hydrogen bond interactions with key amino acid residues such as Ile165, Lys188 (catalytic), Glu239 (gk+1), Leu241 (gk+3), Ser242, Asn244, and Asp307, of the target protein, were considered potential ligands. Hydrogen bond interactions with Leu241 (gk+3) were considered key determinants for the selection. High scoring structures were also docked by Glide XP docking in the active sites of twelve DYRK1A related protein kinases, viz. DYRK1B, DYRK2, CDK5/p25, CK1, CLK1, CLK3, GSK3ß, MAPK2, MAPK10, PIM1, PKA, and PKCα, in order to find selective DYRK1A inhibitors. MM/GBSA binding free energies of selected ligand-protein complexes were also calculated in order to remove false positive hits. Physicochemical and pharmacokinetic properties of the selected six hit ligands were also computed and related with the proposed limits for orally active CNS drugs. The computational toxicity webserver ProTox-II was used to predict the toxicity profile of selected six hits (molmall IDs 9539, 11352, 15938, 19037, 21830 and 21878). The selected six docked ligand-protein systems were exposed to 100 ns molecular dynamics (MD) simulations to validate their mechanism of interactions and stability in the ATP pocket of human DYRK1A kinase. All six ligands were found to be stable in the ATP binding pocket of DYRK1A kinase.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/química , Domínio Catalítico , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinases Dyrk
17.
J Biochem Mol Toxicol ; 35(2): e22634, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32991785

RESUMO

Chrysin is the major bioactive compound of blue passionflower, an important medicinal plant used in traditional herbal formulations since ancient times. In the present study, we report that chrysin nanoparticles (chrysin NPs) protect Wistar rats against kindling-induced epilepsy. Nanoparticles of sizes less than 150 nm with a spherical shape were prepared using poly(d,l-lactic-co-glycolic acid) and polyvinyl alcohol, respectively, as polymer and stabilizer. Rats were injected with subconvulsive doses of pentylenetetrazole (PTZ) (35 mg/kg, intraperitoneal) every second day, with 22 injections in total, and on the same days, they received protective doses of the chrysin NPs (5 and 10 µg/mL, PO), respectively, 45 min before each PTZ injection. After the last PTZ injection, an average of thirteen seizure scores was recorded. Animals were killed by decapitation 24 h after a seizure. The cortex and hippocampus were removed and stored in liquid nitrogen for determining oxidative stress terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, histopathology, and reverse transcription-polymerase chain reaction for messenger RNA expression. The result showed chrysin NPs treatment has counteracted oxidative stress, reduced neuronal apoptosis, and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and NAD(P)H quinone oxidoreductase 1. In conclusion, our findings demonstrate that the neuroprotective effect of chrysin NPs against kindling-induced epilepsy might be escorted by the alleviation of oxidative stress through the Nrf2/antioxidant response element/HO-1 pathway signal pathway.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Epilepsia/prevenção & controle , Flavonoides/farmacologia , Heme Oxigenase-1/metabolismo , Excitação Neurológica/efeitos dos fármacos , Nanopartículas/química , Fármacos Neuroprotetores/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Animais , Epilepsia/induzido quimicamente , Masculino , Fator 2 Relacionado a NF-E2 , Pentilenotetrazol/administração & dosagem , Ratos , Ratos Wistar
18.
Molecules ; 26(16)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34443681

RESUMO

Accurate and precise application of ion-selective electrodes (ISEs) in the quantification of environmental pollutants is a strenuous task. In this work, the electrochemical response of alendronate sodium trihydrate (ALN) was evaluated by the fabrication of two sensitive and delicate membrane electrodes, viz. polyvinyl chloride (PVC) and glassy carbon (GC) electrodes. A linear response was obtained at concentrations from 1 × 10-5 to 1 × 10-2 M for both electrodes. A Nernstian slope of 29 mV/decade over a pH range of 8-11 for the PVC and GC membrane electrodes was obtained. All assay settings were carefully adjusted to obtain the best electrochemical response. The proposed technique was effectively applied for the quantification of ALN in pure form and wastewater samples, acquired from manufacturing industries. The proposed electrodes were effectively used for the determination of ALN in real wastewater samples without any prior treatment. The current findings guarantee the applicability of the fabricated ISEs for the environmental monitoring of ALN.


Assuntos
Indústria Farmacêutica , Resíduos de Drogas/análise , Técnicas Eletroquímicas , Resíduos Industriais/análise , Membranas Artificiais , Osteoporose/tratamento farmacológico , Águas Residuárias/química , Alendronato/análise , Alendronato/química , Carbono/química , Eletrodos , Vidro/química , Concentração de Íons de Hidrogênio , Cloreto de Polivinila/química , Potenciometria , Reprodutibilidade dos Testes
19.
Molecules ; 26(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924091

RESUMO

Ten benzoxazole clubbed 2-pyrrolidinones (11-20) as human monoacylglycerol lipase inhibitors were designed on the criteria fulfilling the structural requirements and on the basis of previously reported inhibitors. The designed, synthesized, and characterized compounds (11-20) were screened against monoacylglycerol lipase (MAGL) in order to find potential inhibitors. Compounds 19 (4-NO2 derivative) and 20 (4-SO2NH2 derivative), with an IC50 value of 8.4 and 7.6 nM, were found most active, respectively. Both of them showed micromolar potency (IC50 value above 50 µM) against a close analogue, fatty acid amide hydrolase (FAAH), therefore considered as selective inhibitors of MAGL. Molecular docking studies of compounds 19 and 20 revealed that carbonyl of 2-pyrrolidinone moiety sited at the oxyanion hole of catalytic site of the enzyme stabilized with three hydrogen bonds (~2 Å) with Ala51, Met123, and Ser122, the amino acid residues responsible for the catalytic function of the enzyme. Remarkably, the physiochemical and pharmacokinetic properties of compounds 19 and 20, computed by QikProp, were found to be in the qualifying range as per the proposed guideline for good orally bioactive CNS drugs. In formalin-induced nociception test, compound 20 reduced the pain response in acute and late stages in a dose-dependent manner. They significantly demonstrated the reduction in pain response, having better potency than the positive control gabapentin (GBP), at 30 mg/kg dose. Compounds 19 and 20 were submitted to NCI, USA, for anticancer activity screening. Compounds 19 (NSC: 778839) and 20 (NSC: 778842) were found to have good anticancer activity on SNB-75 cell line of CNS cancer, exhibiting 35.49 and 31.88% growth inhibition (% GI), respectively.


Assuntos
Antineoplásicos/química , Benzoxazóis/química , Monoacilglicerol Lipases/antagonistas & inibidores , Pirrolidinonas/farmacologia , Analgésicos/química , Analgésicos/farmacologia , Antineoplásicos/farmacologia , Benzoxazóis/farmacologia , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Monoacilglicerol Lipases/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Pirrolidinonas/química , Relação Estrutura-Atividade
20.
J Mol Liq ; 330: 115699, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33867606

RESUMO

Middle east respiratory syndrome coronavirus (MERS-CoV) is a fatal pathogen that poses a serious health risk worldwide and especially in the middle east countries. Targeting the MERS-CoV 3-chymotrypsin-like cysteine protease (3CLpro) with small covalent inhibitors is a significant approach to inhibit replication of the virus. The present work includes generating a pharmacophore model based on the X-ray crystal structures of MERS-CoV 3CLpro in complex with two covalently bound inhibitors. In silico screening of covalent chemical database having 31,642 compounds led to the identification of 378 compounds that fulfils the pharmacophore queries. Lipinski rules of five were then applied to select only compounds with the best physiochemical properties for orally bioavailable drugs. 260 compounds were obtained and subjected to covalent docking-based virtual screening to determine their binding energy scores. The top three candidate compounds, which were shown to adapt similar binding modes as the reported covalent ligands were selected. The mechanism and stability of binding of these compounds were confirmed by 100 ns molecular dynamic simulation followed by MM/PBSA binding free energy calculation. The identified compounds can facilitate the rational design of novel covalent inhibitors of MERS-CoV 3CLpro enzyme as anti-MERS CoV drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA