RESUMO
INTRODUCTION: Long QT syndrome (LQTS) is of great importance as it is the most common cause of sudden cardiac death in childhood. The diagnosis is made by the prolongation of the QTc interval on the electrocardiography. However, clinical heterogeneity and nondiagnostic QTc intervals may cause a delay in the diagnosis. In such cases, genetic tests such as next-generation sequencing (NGS) panel analysis enable a definitive diagnosis. We present the first study that aimed to expand the LQTS's mutational spectrum by NGS panel analysis from Turkey. METHODS: Fifty-seven unrelated patients with clinically diagnosed LQTS were investigated using an NGS panel that includes six LQTS-related genes. Clinical aspects, outcome, and molecular analysis results were reviewed. RESULTS: Pathogenic (53%)/likely pathogenic (23%)/variant of unknown significance (4%) variants were detected in any of the genes examined in 79% of the patients. Among all detected variants, KCNQ1(71%) was the most common gene, followed by SCN5A (11%), KCNH2 (10%), CALM1 (5%), and CACNA1C (3%). Twelve novel variants were detected. Among the variants in KCNQ1, the c.1097G>A variant was present in 42% of patients. This variant also composed 31% of the variants detected in all of the genes. CONCLUSION: Our study expands the spectrum of the variations associated with LQTS with twelve novel variants in five genes. And also it draws attention to the frequency of the KCNQ1 c.1097G>A variant and forms the basis for new studies to determine the possible founder effect in the Turkish population. Furthermore, identifying new variants and clinical findings has importance in elaborating the roles of related genes in pathophysiology and determining the variable expression and incomplete penetration rates in this syndrome.
Assuntos
Síndrome do QT Longo , Canais de Potássio Corretores do Fluxo de Internalização , Canais de Cálcio Tipo L/genética , Canal de Potássio ERG1/genética , Humanos , Canal de Potássio KCNQ1/genética , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/genética , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5 , Canais de Potássio Corretores do Fluxo de Internalização/genética , TurquiaRESUMO
OBJECTIVE: Turkish genome is underrepresented in large genomic databases. This study aims to evaluate the effect of allele frequency in the Turkish population in determining the clinical utility of germline findings in breast cancer, including invasive lobular carcinoma (ILC), mixed invasive ductal and lobular carcinoma (IDC-L), and ductal carcinoma (DC). METHODS: Two clinic-based cohorts from the Umraniye Research and Training Hospital (URTH) were used in this study: a cohort consisting of 132 women with breast cancer and a non-cancer cohort consisting of 492 participants. The evaluation of the germline landscape was performed by analysis of 27 cancer genes. The frequency and type of variants in the breast cancer cohort were compared to those in the non-cancer cohort to investigate the effect of population genetics. The variant allele frequencies in Turkish Variome and gnomAD were statistically evaluated. RESULTS: The genetic analysis identified 121 variants in the breast cancer cohort (actionable = 32, VUS = 89) and 223 variants in the non-cancer cohort (actionable = 25, VUS = 188). The occurrence of 21 variants in both suggested a possible genetic population effect. Evaluation of allele frequency of 121 variants from the breast cancer cohort showed 22% had a significantly higher value in Turkish Variome compared to gnomAD (p < 0.0001, 95% CI) with a mean difference of 60 times (ranging from 1.37-354.4). After adjusting for variant allele frequency using the ancestry-appropriate database, 6.7% (5/75) of VUS was reclassified to likely benign. CONCLUSION: To our knowledge, this is the first study of population genetic effects in breast cancer subtypes in Turkish women. Our findings underscore the need for a large genomic database representing Turkish population-specific variants. It further highlights the significance of the ancestry-appropriate population database for accurate variant assessment in clinical settings.
Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Carcinoma Lobular , Humanos , Feminino , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Genômica , OncogenesRESUMO
Importance: Germline CHEK2 pathogenic variants (PVs) are frequently detected by multigene cancer panel testing (MGPT), but our understanding of PVs beyond c.1100del has been limited. Objective: To compare cancer phenotypes of frequent CHEK2 PVs individually and collectively by variant type. Design, Setting, and Participants: This retrospective cohort study was carried out in a single diagnostic testing laboratory from 2012 to 2019. Overall, 3783 participants with CHEK2 PVs identified via MGPT were included. Medical histories of cancer in participants with frequent PVs, negative MGPT (wild type), loss-of-function (LOF), and missense were compared. Main Outcomes and Measures: Participants were stratified by CHEK2 PV type. Descriptive statistics were summarized including median (IQR) for continuous variables and proportions for categorical characteristics. Differences in age and proportions were assessed with Wilcoxon rank sum and Fisher exact tests, respectively. Frequencies, odds ratios (ORs), 95% confidence intervals were calculated, and P values were corrected for multiple comparisons where appropriate. Results: Of the 3783 participants with CHEK2 PVs, 3473 (92%) were female and most reported White race. Breast cancer was less frequent in participants with p.I157T (OR, 0.66; 95% CI, 0.56-0.78; P<.001), p.S428F (OR, 0.59; 95% CI. 0.46-0.76; P<.001), and p.T476M (OR, 0.74; 95% CI, 0.56-0.98; P = .04) PVs compared with other PVs and an association with nonbreast cancers was not found. Following the exclusion of p.I157T, p.S428F, and p.T476M, participants with monoallelic CHEK2 PV had a younger age at first cancer diagnosis (P < .001) and were more likely to have breast (OR, 1.83; 95% CI, 1.66-2.02; P < .001), thyroid (OR, 1.63; 95% CI, 1.26-2.08; P < .001), and kidney cancer (OR, 2.57; 95% CI, 1.75-3.68; P < .001) than the wild-type cohort. Participants with a CHEK2 PV were less likely to have a diagnosis of colorectal cancer (OR, 0.62; 95% CI, 0.51-0.76; P < .001) compared with those in the wild-type cohort. There were no significant differences between frequent CHEK2 PVs and c.1100del and no differences between CHEK2 missense and LOF PVs. Conclusions and Relevance: CHEK2 PVs, with few exceptions (p.I157T, p.S428F, and p.T476M), were associated with similar cancer phenotypes irrespective of variant type. CHEK2 PVs were not associated with colorectal cancer, but were associated with breast, kidney, and thyroid cancers. Compared with other CHEK2 PVs, the frequent p.I157T, p.S428F, and p.T476M alleles have an attenuated association with breast cancer and were not associated with nonbreast cancers. These data may inform the genetic counseling and care of individuals with CHEK2 PVs.