Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(5): 107280, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588810

RESUMO

Evolutionarily conserved structural folds can give rise to diverse biological functions, yet predicting atomic-scale interactions that contribute to the emergence of novel activities within such folds remains challenging. Pancreatic-type ribonucleases illustrate this complexity, sharing a core structure that has evolved to accommodate varied functions. In this study, we used ancestral sequence reconstruction to probe evolutionary and molecular determinants that distinguish biological activities within eosinophil members of the RNase 2/3 subfamily. Our investigation unveils functional, structural, and dynamical behaviors that differentiate the evolved ancestral ribonuclease (AncRNase) from its contemporary eosinophil RNase orthologs. Leveraging the potential of ancestral reconstruction for protein engineering, we used AncRNase predictions to design a minimal 4-residue variant that transforms human RNase 2 into a chimeric enzyme endowed with the antimicrobial and cytotoxic activities of RNase 3 members. This work provides unique insights into mutational and evolutionary pathways governing structure, function, and conformational states within the eosinophil RNase subfamily, offering potential for targeted modulation of RNase-associated functions.


Assuntos
Eosinófilos , Humanos , Sequência de Aminoácidos , Eosinófilos/metabolismo , Eosinófilos/enzimologia , Evolução Molecular , Ribonucleases/metabolismo , Ribonucleases/química , Ribonucleases/genética , Animais , Macaca fascicularis , Filogenia , Modelos Moleculares , Estrutura Terciária de Proteína
2.
Proc Natl Acad Sci U S A ; 117(41): 25494-25504, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32999062

RESUMO

During DNA replication, replicative DNA polymerases may encounter DNA lesions, which can stall replication forks. One way to prevent replication fork stalling is through the recruitment of specialized translesion synthesis (TLS) polymerases that have evolved to incorporate nucleotides opposite DNA lesions. Rev1 is a specialized TLS polymerase that bypasses abasic sites, as well as minor-groove and exocyclic guanine adducts. Lesion bypass is accomplished using a unique protein-template mechanism in which the templating base is evicted from the DNA helix and the incoming dCTP hydrogen bonds with an arginine side chain of Rev1. To understand the protein-template mechanism at an atomic level, we employed a combination of time-lapse X-ray crystallography, molecular dynamics simulations, and DNA enzymology on the Saccharomyces cerevisiae Rev1 protein. We find that Rev1 evicts the templating base from the DNA helix prior to binding the incoming nucleotide. Binding the incoming nucleotide changes the conformation of the DNA substrate to orient it for nucleotidyl transfer, although this is not coupled to large structural changes in Rev1 like those observed with other DNA polymerases. Moreover, we found that following nucleotide incorporation, Rev1 converts the pyrophosphate product to two monophosphates, which drives the reaction in the forward direction and prevents pyrophosphorolysis. Following nucleotide incorporation, the hydrogen bonds between the incorporated nucleotide and the arginine side chain are broken, but the templating base remains extrahelical. These postcatalytic changes prevent potentially mutagenic processive synthesis by Rev1 and facilitate dissociation of the DNA product from the enzyme.


Assuntos
Reparo do DNA , Replicação do DNA/fisiologia , DNA/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , DNA/química , Dano ao DNA , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Simulação de Dinâmica Molecular , Nucleotidiltransferases/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Nucleic Acids Res ; 48(13): 7345-7355, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32542366

RESUMO

Base excision repair (BER) maintains genomic stability through the repair of DNA damage. Within BER, AP-endonuclease 1 (APE1) is a multifunctional enzyme that processes DNA intermediates through its backbone cleavage activity. To accomplish these repair activities, APE1 must recognize and accommodate several diverse DNA substrates. This is hypothesized to occur through a DNA sculpting mechanism where structural adjustments of the DNA substrate are imposed by the protein; however, how APE1 uniquely sculpts each substrate within a single rigid active site remains unclear. Here, we utilize structural and biochemical approaches to probe the DNA sculpting mechanism of APE1, specifically by characterizing a protein loop that intercalates the minor groove of the DNA (termed the intercalating loop). Pre-steady-state kinetics reveal a tyrosine residue within the intercalating loop (Y269) that is critical for AP-endonuclease activity. Using X-ray crystallography and molecular dynamics simulations, we determined the Y269 residue acts to anchor the intercalating loop on abasic DNA. Atomic force microscopy reveals the Y269 residue is required for proper DNA bending by APE1, providing evidence for the importance of this mechanism. We conclude that this previously unappreciated tyrosine residue is key to anchoring the intercalating loop and stabilizing the DNA in the APE1 active site.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA/química , Domínio Catalítico , DNA/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Humanos , Simulação de Dinâmica Molecular , Mutação , Motivos de Nucleotídeos , Ligação Proteica , Tirosina/química , Tirosina/genética
4.
Chembiochem ; 22(2): 288-297, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32706524

RESUMO

Few other elements play a more central role in biology than hydrogen. The interactions, bonding and movement of hydrogen atoms are central to biological catalysis, structure and function. Yet owing to the elusive nature of a single hydrogen atom few experimental and computational techniques can precisely determine its location. This is exemplified in short hydrogen bonds (SHBs) where the location of the hydrogen atom is indicative of the underlying strength of the bonds, which can vary from 1-5 kcal/mol in canonical hydrogen bonds, to an almost covalent nature in single-well hydrogen bonds. Owing to the often-times inferred position of hydrogen, the role of SHBs in biology has remained highly contested and debated. This has also led to discrepancies in computational, biochemical and structural studies of proteins thought to use SHBs in performing chemistry and stabilizing interactions. Herein, we discuss in detail two distinct examples, namely the conserved catalytic triad and the photoreceptor, photoactive yellow protein, where studies of these SHB-containing systems have permitted contextualization of the role these unique hydrogen bonds play in biology.


Assuntos
Hidrogênio/metabolismo , Proteínas/metabolismo , Biocatálise , Hidrogênio/química , Ligação de Hidrogênio , Proteínas/química
5.
Biochemistry ; 59(6): 755-765, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31909602

RESUMO

Ribonuclease 6 (RNase 6) is one of eight catalytically active human pancreatic-type RNases that belong to a superfamily of rapidly evolving enzymes. Like some of its human homologues, RNase 6 exhibits host defense properties such as antiviral and antibacterial activities. Recently solved crystal structures of this enzyme in its nucleotide-free form show the conservation of the prototypical kidney-shaped fold preserved among vertebrate RNases, in addition to revealing the presence of a unique secondary active site. In this study, we determine the structural and conformational properties experienced by RNase 6 upon binding to substrate and product analogues. We present the first crystal structures of RNase 6 bound to a nucleotide ligand (adenosine 5'-monophosphate), in addition to RNase 6 bound to phosphate ions. While the enzyme preserves B2 subsite ligand preferences, our results show a lack of typical B2 subsite interactions normally observed in homologous ligand-bound RNases. A comparison of the dynamical properties of RNase 6 in its apo-, substrate-, and product-bound states highlight the unique dynamical properties experienced on time scales ranging from nano- to milliseconds. Overall, our results confirm the specific evolutionary adaptation of RNase 6 relative to its unique catalytic and biological activities.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Ribonucleases/química , Ribonucleases/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Sítios de Ligação/fisiologia , Humanos , Ligantes , Estrutura Secundária de Proteína
6.
Biochemistry ; 58(6): 438-449, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30507164

RESUMO

Even after a century of investigation, our understanding of how enzymes work remains far from complete. In particular, several factors that enable enzymes to achieve high catalytic efficiencies remain only poorly understood. A number of theories have been developed, which propose or reaffirm that enzymes work as structural scaffolds, serving to bring together and properly orient the participants so that the reaction can proceed; therefore, leading to enzymes being viewed as only passive participants in the catalyzed reaction. A growing body of evidence shows that enzymes are not rigid structures but are constantly undergoing a wide range of internal motions and conformational fluctuations. In this Perspective, on the basis of studies from our group, we discuss the emerging biophysical model of enzyme catalysis that provides a detailed understanding of the interconnection among internal protein motions, conformational substates, enzyme mechanisms, and the catalytic efficiency of enzymes. For a number of enzymes, networks of conserved residues that extend from the surface of the enzyme all the way to the active site have been discovered. These networks are hypothesized to serve as pathways of energy transfer that enables thermodynamical coupling of the surrounding solvent with enzyme catalysis and play a role in promoting enzyme function. Additionally, the role of enzyme structure and electrostatic effects has been well acknowledged for quite some time. Collectively, the recent knowledge gained about enzyme mechanisms suggests that the conventional paradigm of enzyme structure encoding function is incomplete and needs to be extended to structure encodes dynamics, and together these enzyme features encode function including catalytic rate acceleration.


Assuntos
Biocatálise , Biofísica , Enzimas/química , Enzimas/metabolismo , Conformação Proteica , Domínio Catalítico , Humanos
7.
Biochemistry ; 58(9): 1198-1213, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30724552

RESUMO

Dihydrofolate reductase (DHFR) reduces dihydrofolate (DHF) to tetrahydrofolate using NADPH as a cofactor. Due to its role in one carbon metabolism, chromosomal DHFR is the target of the antibacterial drug, trimethoprim. Resistance to trimethoprim has resulted in a type II DHFR that is not structurally related to the chromosomal enzyme target. Because of its metabolic significance, understanding DHFR kinetics and ligand binding behavior in more cell-like conditions, where the total macromolecule concentration can be as great as 300 mg/mL, is important. The progress-curve kinetics and ligand binding properties of the drug target (chromosomal E. coli DHFR) and the drug resistant (R67 DHFR) enzymes were studied in the presence of macromolecular cosolutes. There were varied effects on NADPH oxidation and binding to the two DHFRs, with some cosolutes increasing affinity and others weakening binding. However, DHF binding and reduction in both DHFRs decreased in the presence of all cosolutes. The decreased binding of ligands is mostly attributed to weak associations with the macromolecules, as opposed to crowder effects on the DHFRs. Computer simulations found weak, transient interactions for both ligands with several proteins. The net charge of protein cosolutes correlated with effects on NADP+ binding, with near neutral and positively charged proteins having more detrimental effects on binding. For DHF binding, effects correlated more with the size of binding pockets on the protein crowders. These nonspecific interactions between DHFR ligands and proteins predict that the in vivo efficiency of DHFRs may be much lower than expected from their in vitro rates.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Calorimetria , Domínio Catalítico , Dicroísmo Circular , Dextranos/química , Dextranos/metabolismo , Farmacorresistência Bacteriana/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Cinética , Ligantes , Muramidase/química , Muramidase/metabolismo , NAD/metabolismo , NADP/metabolismo , Conformação Proteica , Tetra-Hidrofolato Desidrogenase/genética
8.
Biochemistry ; 58(37): 3861-3868, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31423766

RESUMO

Understanding protein motions and their role in enzymatic reactions is an important and timely topic in enzymology. Protein motions that are involved in the chemical step of catalysis are particularly intriguing but difficult to identify. A global network of coupled residues in Escherichia coli dihydrofolate reductase (E. coli DHFR), which assists in catalyzing the chemical step, has previously been demonstrated through quantum mechanical/molecular mechanical and molecular dynamics simulations as well as bioinformatic analyses. A few specific residues (M42, G121, F125, and I14) were shown to function synergistically with measurements of single-turnover rates and the temperature dependence of intrinsic kinetic isotope effects (KIEsint) of site-directed mutants. This study hypothesizes that the global network of residues involved in the chemical step is evolutionarily conserved and probes homologous residues of the potential global network in human DHFR through measurements of the temperature dependence of KIEsint and computer simulations based on the empirical valence bond method. We study mutants M53W and S145V. Both of these remote residues are homologous to network residues in E. coli DHFR. Non-additive isotope effects on activation energy are observed between M53 and S145, indicating their synergistic effect on the chemical step in human DHFR, which suggests that both of these residues are part of a network affecting the chemical step in enzyme catalysis. This finding supports the hypothesis that human and E. coli DHFR share similar networks, consistent with evolutionary preservation of such networks.


Assuntos
Computadores Moleculares , Proteínas de Escherichia coli/química , Evolução Molecular , Tetra-Hidrofolato Desidrogenase/química , Humanos , Estrutura Secundária de Proteína
9.
Chem Res Toxicol ; 32(9): 1801-1810, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31411024

RESUMO

The single residue mutation of butyrylcholinesterase (BChEG117H) hydrolyzes a number of organophosphosphorus (OP) anticholinesterases. Whereas other BChE active site/proximal mutations have been investigated, none are sufficiently active to be prophylactically useful. In a fundamentally different computer simulations driven strategy, we identified a surface peptide loop (residues 278-285) exhibiting dynamic motions during catalysis and modified it via residue insertions. We evaluated these loop mutants using computer simulations, substrate kinetics, resistance to inhibition, and enzyme reactivation assays using both the choline ester and OP substrates. A slight but significant increase in reactivation was noted with paraoxon with one of the mutants, and changes in KM and catalytic efficiency were noted in others. Simulations suggested weaker interactions between OP versus choline substrates and the active site of all engineered versions of the enzyme. The results indicate that an improvement of OP anticholinesterase hydrolysis through surface loop engineering may be a more effective strategy in an enzyme with higher intrinsic OP compound hydrolase activity.


Assuntos
Butirilcolinesterase/química , Inibidores da Colinesterase/química , Iodeto de Ecotiofato/química , Isoflurofato/química , Paraoxon/química , Biocatálise , Butirilcolinesterase/genética , Butirilcolinesterase/metabolismo , Domínio Catalítico , Inibidores da Colinesterase/metabolismo , Iodeto de Ecotiofato/metabolismo , Hidrólise , Isoflurofato/metabolismo , Cinética , Simulação de Dinâmica Molecular , Mutação , Paraoxon/metabolismo , Ligação Proteica , Engenharia de Proteínas , Termodinâmica
10.
Angew Chem Int Ed Engl ; 58(45): 16260-16266, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31515870

RESUMO

The position, bonding and dynamics of hydrogen atoms in the catalytic centers of proteins are essential for catalysis. The role of short hydrogen bonds in catalysis has remained highly debated and led to establishment of several distinctive geometrical arrangements of hydrogen atoms vis-à-vis the heavier donor and acceptor counterparts, that is, low-barrier, single-well or short canonical hydrogen bonds. Here we demonstrate how the position of a hydrogen atom in the catalytic triad of an aminoglycoside inactivating enzyme leads to a thirty-fold increase in catalytic turnover. A low-barrier hydrogen bond is present in the enzyme active site for the substrates that are turned over the best, whereas a canonical hydrogen bond is found with the least preferred substrate. This is the first comparison of these hydrogen bonds involving an identical catalytic network, while directly demonstrating how active site electrostatics adapt to the electronic nature of substrates to tune catalysis.


Assuntos
Acetiltransferases/metabolismo , Aminoglicosídeos/metabolismo , Antibacterianos/metabolismo , Acetiltransferases/química , Aminoglicosídeos/química , Antibacterianos/química , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Conformação Proteica , Eletricidade Estática
11.
Biochemistry ; 57(40): 5864-5876, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30204415

RESUMO

The genome of the hyperthermophile Thermotoga maritima contains three isoforms of maltose binding protein (MBP) that are high-affinity receptors for di-, tri-, and tetrasaccharides. Two of these proteins (tmMBP1 and tmMBP2) share significant sequence identity, approximately 90%, while the third (tmMBP3) shares less than 40% identity. MBP from Escherichia coli (ecMBP) shares 35% sequence identity with the tmMBPs. This subset of MBP isoforms offers an interesting opportunity to investigate the mechanisms underlying the evolution of substrate specificity and affinity profiles in a genome where redundant MBP genes are present. In this study, the X-ray crystal structures of tmMBP1, tmMBP2, and tmMBP3 are reported in the absence and presence of oligosaccharides. tmMBP1 and tmMBP2 have binding pockets that are larger than that of tmMBP3, enabling them to bind to larger substrates, while tmMBP1 and tmMBP2 also undergo substrate-induced hinge bending motions (∼52°) that are larger than that of tmMBP3 (∼35°). Small-angle X-ray scattering was used to compare protein behavior in solution, and computer simulations provided insights into dynamics of these proteins. Comparing quantitative protein-substrate interactions and dynamical properties of tmMBPs with those of the promiscuous ecMBP and disaccharide selective Thermococcus litoralis MBP provides insights into the features that enable selective binding. Collectively, the results provide insights into how the structure and dynamics of tmMBP homologues enable them to differentiate between a myriad of chemical entities while maintaining their common fold.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas Ligantes de Maltose/química , Maltose/química , Thermotoga maritima/química , Sítios de Ligação , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas Ligantes de Maltose/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Thermotoga maritima/genética
12.
Biochemistry ; 57(29): 4263-4275, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29901984

RESUMO

Optimal enzyme activity depends on a number of factors, including structure and dynamics. The role of enzyme structure is well recognized; however, the linkage between protein dynamics and enzyme activity has given rise to a contentious debate. We have developed an approach that uses an aqueous mixture of organic solvent to control the functionally relevant enzyme dynamics (without changing the structure), which in turn modulates the enzyme activity. Using this approach, we predicted that the hydride transfer reaction catalyzed by the enzyme dihydrofolate reductase (DHFR) from Escherichia coli in aqueous mixtures of isopropanol (IPA) with water will decrease by ∼3 fold at 20% (v/v) IPA concentration. Stopped-flow kinetic measurements find that the pH-independent khydride rate decreases by 2.2 fold. X-ray crystallographic enzyme structures show no noticeable differences, while computational studies indicate that the transition state and electrostatic effects were identical for water and mixed solvent conditions; quasi-elastic neutron scattering studies show that the dynamical enzyme motions are suppressed. Our approach provides a unique avenue to modulating enzyme activity through changes in enzyme dynamics. Further it provides vital insights that show the altered motions of DHFR cause significant changes in the enzyme's ability to access its functionally relevant conformational substates, explaining the decreased khydride rate. This approach has important implications for obtaining fundamental insights into the role of rate-limiting dynamics in catalysis and as well as for enzyme engineering.


Assuntos
2-Propanol/metabolismo , Ativação Enzimática/efeitos dos fármacos , Escherichia coli/enzimologia , Solventes/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo , Cristalografia por Raios X/métodos , Escherichia coli/química , Escherichia coli/metabolismo , Cinética , Simulação de Dinâmica Molecular , Conformação Proteica/efeitos dos fármacos , Eletricidade Estática , Tetra-Hidrofolato Desidrogenase/química , Viscosidade , Água/metabolismo
13.
Biochemistry ; 56(40): 5328-5337, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28876049

RESUMO

The ligand-induced conformational changes of periplasmic binding proteins (PBP) play a key role in the acquisition of metabolites in ATP binding cassette (ABC) transport systems. This conformational change allows for differential recognition of the ligand occupancy of the PBP by the ABC transporter. This minimizes futile ATP hydrolysis in the transporter, a phenomenon in which ATP hydrolysis is not coupled to metabolite transport. In many systems, the PBP conformational change is insufficient at eliminating futile ATP hydrolysis. Here we identify an additional state of the PBP that is also allosterically regulated by the ligand. Ligand binding to the homodimeric apo PBP leads to a tightening of the interface α-helices so that the hydrogen bonding pattern shifts to that of a 310 helix, in-turn altering the contacts and the dynamics of the protein interface so that the monomer exists in the presence of ligand.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas Periplásmicas de Ligação/química , Proteínas Periplásmicas de Ligação/metabolismo , Multimerização Proteica , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Apoproteínas/química , Apoproteínas/metabolismo , Cristalografia por Raios X , Hidrólise , Ligantes , Lectina de Ligação a Manose/química , Lectina de Ligação a Manose/metabolismo , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína , Thermotoga maritima
14.
Arch Biochem Biophys ; 628: 71-80, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28483383

RESUMO

Overwhelming evidence now illustrates the defining role of atomic-scale protein flexibility in biological events such as allostery, cell signaling, and enzyme catalysis. Over the years, spin relaxation nuclear magnetic resonance (NMR) has provided significant insights on the structural motions occurring on multiple time frames over the course of a protein life span. The present review article aims to illustrate to the broader community how this technique continues to shape many areas of protein science and engineering, in addition to being an indispensable tool for studying atomic-scale motions and functional characterization. Continuing developments in underlying NMR technology alongside software and hardware developments for complementary computational approaches now enable methodologies to routinely provide spatial directionality and structural representations traditionally harder to achieve solely using NMR spectroscopy. In addition to its well-established role in structural elucidation, we present recent examples that illustrate the combined power of selective isotope labeling, relaxation dispersion experiments, chemical shift analyses, and computational approaches for the characterization of conformational sub-states in proteins and enzymes.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Sítio Alostérico , Humanos , Marcação por Isótopo , Simulação de Dinâmica Molecular , Proteínas/metabolismo , Fatores de Tempo
15.
Angew Chem Int Ed Engl ; 56(3): 767-770, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-28004877

RESUMO

Lytic polysaccharide monooxygenases have attracted vast attention owing to their abilities to disrupt glycosidic bonds via oxidation instead of hydrolysis and to enhance enzymatic digestion of recalcitrant substrates including chitin and cellulose. We have determined high-resolution X-ray crystal structures of an enzyme from Neurospora crassa in the resting state and of a copper(II) dioxo intermediate complex formed in the absence of substrate. X-ray crystal structures also revealed "pre-bound" molecular oxygen adjacent to the active site. An examination of protonation states enabled by neutron crystallography and density functional theory calculations identified a role for a conserved histidine in promoting oxygen activation. These results provide a new structural description of oxygen activation by substrate free lytic polysaccharide monooxygenases and provide insights that can be extended to reactivity in the enzyme-substrate complex.


Assuntos
Oxigenases de Função Mista/metabolismo , Neurospora crassa/enzimologia , Oxigênio/metabolismo , Polissacarídeos/metabolismo , Domínio Catalítico , Oxigenases de Função Mista/química , Modelos Moleculares , Oxigênio/química , Polissacarídeos/química
16.
Biochemistry ; 55(1): 133-45, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26637016

RESUMO

Homotetrameric R67 dihydrofolate reductase possesses 222 symmetry and a single active site pore. This situation results in a promiscuous binding site that accommodates either the substrate, dihydrofolate (DHF), or the cofactor, NADPH. NADPH interacts more directly with the protein as it is larger than the substrate. In contrast, the p-aminobenzoyl-glutamate tail of DHF, as monitored by nuclear magnetic resonance and crystallography, is disordered when bound. To explore whether smaller active site volumes (which should decrease the level of tail disorder by confinement effects) alter steady state rates, asymmetric mutations that decreased the half-pore volume by ∼35% were constructed. Only minor effects on k(cat) were observed. To continue exploring the role of tail disorder in catalysis, 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide-mediated cross-linking between R67 DHFR and folate was performed. A two-folate, one-tetramer complex results in the loss of enzyme activity where two symmetry-related K32 residues in the protein are cross-linked to the carboxylates of two bound folates. The tethered folate could be reduced, although with a ≤30-fold decreased rate, suggesting decreased dynamics and/or suboptimal positioning of the cross-linked folate for catalysis. Computer simulations that restrain the dihydrofolate tail near K32 indicate that cross-linking still allows movement of the p-aminobenzoyl ring, which allows the reaction to occur. Finally, a bis-ethylene-diamine-α,γ-amide folate adduct was synthesized; both negatively charged carboxylates in the glutamate tail were replaced with positively charged amines. The K(i) for this adduct was ∼9-fold higher than for folate. These various results indicate a balance between folate tail disorder, which helps the enzyme bind substrate while dynamics facilitates catalysis.


Assuntos
Domínio Catalítico , Escherichia coli/enzimologia , Ácido Fólico/análogos & derivados , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Simulação por Computador , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Ácido Fólico/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Mutação , NADP/metabolismo , Oxirredução , Conformação Proteica , Multimerização Proteica , Tetra-Hidrofolato Desidrogenase/genética
17.
Biochemistry ; 55(45): 6282-6294, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27768285

RESUMO

Folate, or vitamin B9, is an important compound in one-carbon metabolism. Previous studies have found weaker binding of dihydrofolate to dihydrofolate reductase in the presence of osmolytes. In other words, osmolytes are more difficult to remove from the dihydrofolate solvation shell than water; this shifts the equilibrium toward the free ligand and protein species. This study uses vapor-pressure osmometry to explore the interaction of folate with the model osmolyte, glycine betaine. This method yields a preferential interaction potential (µ23/RT value). This value is concentration-dependent as folate dimerizes. The µ23/RT value also tracks the deprotonation of folate's N3-O4 keto-enol group, yielding a pKa of 8.1. To determine which folate atoms interact most strongly with betaine, the interaction of heterocyclic aromatic compounds (as well as other small molecules) with betaine was monitored. Using an accessible surface area approach coupled with osmometry measurements, deconvolution of the µ23/RT values into α values for atom types was achieved. This allows prediction of µ23/RT values for larger molecules such as folate. Molecular dynamics simulations of folate show a variety of structures from extended to L-shaped. These conformers possess µ23/RT values from -0.18 to 0.09 m-1, where a negative value indicates a preference for solvation by betaine and a positive value indicates a preference for water. This range of values is consistent with values observed in osmometry and solubility experiments. As the average predicted folate µ23/RT value is near zero, this indicates folate interacts almost equally well with betaine and water. Specifically, the glutamate tail prefers to interact with water, while the aromatic rings prefer betaine. In general, the more protonated species in our small molecule survey interact better with betaine as they provide a source of hydrogens (betaine is not a hydrogen bond donor). Upon deprotonation of the small molecule, the preference swings toward water interaction because of its hydrogen bond donating capacities.


Assuntos
Betaína/química , Ácido Fólico/química , Simulação de Dinâmica Molecular , Algoritmos , Betaína/metabolismo , Calorimetria/métodos , Ácido Fólico/metabolismo , Ligação de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Modelos Químicos , Concentração Osmolar , Termodinâmica , Água/química
18.
Biochemistry ; 55(30): 4184-96, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27387012

RESUMO

Xylanases catalyze the hydrolysis of xylan, an abundant carbon and energy source with important commercial ramifications. Despite tremendous efforts devoted to the catalytic improvement of xylanases, success remains limited because of our relatively poor understanding of their molecular properties. Previous reports suggested the potential role of atomic-scale residue dynamics in modulating the catalytic activity of GH11 xylanases; however, dynamics in these studies was probed on time scales orders of magnitude faster than the catalytic time frame. Here, we used nuclear magnetic resonance titration and relaxation dispersion experiments ((15)N-CPMG) in combination with X-ray crystallography and computational simulations to probe conformational motions occurring on the catalytically relevant millisecond time frame in xylanase B2 (XlnB2) and its catalytically impaired mutant E87A from Streptomyces lividans 66. Our results show distinct dynamical properties for the apo and ligand-bound states of the enzymes. The apo form of XlnB2 experiences conformational exchange for residues in the fingers and palm regions of the catalytic cleft, while the catalytically impaired E87A variant displays millisecond dynamics only in the fingers, demonstrating the long-range effect of the mutation on flexibility. Ligand binding induces enhanced conformational exchange of residues interacting with the ligand in the fingers and thumb loop regions, emphasizing the potential role of residue motions in the fingers and thumb loop regions for recognition, positioning, processivity, and/or stabilization of ligands in XlnB2. To the best of our knowledge, this work represents the first experimental characterization of millisecond dynamics in a GH11 xylanase family member. These results offer new insights into the potential role of conformational exchange in GH11 enzymes, providing essential dynamic information to help improve protein engineering and design applications.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Streptomyces lividans/enzimologia , Substituição de Aminoácidos , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Proteínas de Bactérias/genética , Biocatálise , Domínio Catalítico/genética , Cristalografia por Raios X , Endo-1,4-beta-Xilanases/genética , Genes Bacterianos , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptomyces lividans/genética
19.
Acc Chem Res ; 47(1): 149-56, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23988159

RESUMO

Functioning proteins do not remain fixed in a unique structure, but instead they sample a range of conformations facilitated by motions within the protein. Even in the native state, a protein exists as a collection of interconverting conformations driven by thermodynamic fluctuations. Motions on the fast time scale allow a protein to sample conformations in the nearby area of its conformational landscape, while motions on slower time scales give it access to conformations in distal areas of the landscape. Emerging evidence indicates that protein landscapes contain conformational substates with dynamic and structural features that support the designated function of the protein. Nuclear magnetic resonance (NMR) experiments provide information about conformational ensembles of proteins. X-ray crystallography allows researchers to identify the most populated states along the landscape, and computational simulations give atom-level information about the conformational substates of different proteins. This ability to characterize and obtain quantitative information about the conformational substates and the populations of proteins within them is allowing researchers to better understand the relationship between protein structure and dynamics and the mechanisms of protein function. In this Account, we discuss recent developments and challenges in the characterization of functionally relevant conformational populations and substates of proteins. In some enzymes, the sampling of functionally relevant conformational substates is connected to promoting the overall mechanism of catalysis. For example, the conformational landscape of the enzyme dihydrofolate reductase has multiple substates, which facilitate the binding and the release of the cofactor and substrate and catalyze the hydride transfer. For the enzyme cyclophilin A, computational simulations reveal that the long time scale conformational fluctuations enable the enzyme to access conformational substates that allow it to attain the transition state, therefore promoting the reaction mechanism. In the long term, this emerging view of proteins with conformational substates has broad implications for improving our understanding of enzymes, enzyme engineering, and better drug design. Researchers have already used photoactivation to modulate protein conformations as a strategy to develop a hypercatalytic enzyme. In addition, the alteration of the conformational substates through binding of ligands at locations other than the active site provides the basis for the design of new medicines through allosteric modulation.


Assuntos
Proteínas/química , Proteínas/metabolismo , Biocatálise , Biologia Computacional , Ciclofilina A/química , Ciclofilina A/metabolismo , Humanos , Conformação Proteica
20.
PLoS Biol ; 9(11): e1001193, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22087074

RESUMO

Proteins are intrinsically flexible molecules. The role of internal motions in a protein's designated function is widely debated. The role of protein structure in enzyme catalysis is well established, and conservation of structural features provides vital clues to their role in function. Recently, it has been proposed that the protein function may involve multiple conformations: the observed deviations are not random thermodynamic fluctuations; rather, flexibility may be closely linked to protein function, including enzyme catalysis. We hypothesize that the argument of conservation of important structural features can also be extended to identification of protein flexibility in interconnection with enzyme function. Three classes of enzymes (prolyl-peptidyl isomerase, oxidoreductase, and nuclease) that catalyze diverse chemical reactions have been examined using detailed computational modeling. For each class, the identification and characterization of the internal protein motions coupled to the chemical step in enzyme mechanisms in multiple species show identical enzyme conformational fluctuations. In addition to the active-site residues, motions of protein surface loop regions (>10 Å away) are observed to be identical across species, and networks of conserved interactions/residues connect these highly flexible surface regions to the active-site residues that make direct contact with substrates. More interestingly, examination of reaction-coupled motions in non-homologous enzyme systems (with no structural or sequence similarity) that catalyze the same biochemical reaction shows motions that induce remarkably similar changes in the enzyme-substrate interactions during catalysis. The results indicate that the reaction-coupled flexibility is a conserved aspect of the enzyme molecular architecture. Protein motions in distal areas of homologous and non-homologous enzyme systems mediate similar changes in the active-site enzyme-substrate interactions, thereby impacting the mechanism of catalyzed chemistry. These results have implications for understanding the mechanism of allostery, and for protein engineering and drug design.


Assuntos
Enzimas/química , Enzimas/metabolismo , Evolução Molecular , Catálise , Simulação por Computador , Ciclofilinas , Humanos , Modelos Moleculares , Oxirredutases/química , Oxirredutases/metabolismo , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/metabolismo , Dobramento de Proteína , Ribonucleases/química , Ribonucleases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA