Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Molecules ; 28(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36903642

RESUMO

Microalgae are capable of assimilating nutrients from wastewater (WW), producing clean water and biomass rich in bioactive compounds that need to be recovered from inside the microalgal cell. This work investigated subcritical water (SW) extraction to collect high-value compounds from the microalga Tetradesmus obliquus after treating poultry WW. The treatment efficiency was evaluated in terms of total Kjeldahl nitrogen (TKN), phosphate, chemical oxygen demand (COD) and metals. T. obliquus was able to remove 77% TKN, 50% phosphate, 84% COD, and metals (48-89%) within legislation values. SW extraction was performed at 170 °C and 30 bar for 10 min. SW allowed the extraction of total phenols (1.073 mg GAE/mL extract) and total flavonoids (0.111 mg CAT/mL extract) with high antioxidant activity (IC50 value, 7.18 µg/mL). The microalga was shown to be a source of organic compounds of commercial value (e.g., squalene). Finally, the SW conditions allowed the removal of pathogens and metals in the extracts and residues to values in accordance with legislation, assuring their safety for feed or agriculture applications.


Assuntos
Clorofíceas , Microalgas , Animais , Águas Residuárias , Biomassa , Aves Domésticas , Água , Metais , Tecnologia , Fosfatos , Nitrogênio
2.
J Environ Manage ; 302(Pt B): 114115, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34800773

RESUMO

Waterworks which utilise river bank filtration water sources often have to apply aeration and sand filtration to remove iron and manganese during the drinking water treatment process. After some time, the sand becomes saturated and the spent filter sand (SFS) must be disposed of and replaced. In order to valorize this waste stream, this paper investigates the reuse of SFS as an adsorbent for the treatment of arsenic contaminated drinking water. The arsenic removal performance of SFS is compared with two synthetic iron oxide coated sands (IOCS). The sorbents were first characterized by SEM, EDS, BET specific surface area, and point of zero charge (pHpzc) measurements, and then investigated under a variety of conditions. The surface of the SFS was revealed to be coated with iron manganese binary oxide. The Freundlich model best described the isotherm experiment data, indicating a non monolayer adsorption model for arsenic adsorption on the three IOCS investigated. As(III) and As(V) removals were negatively effected by the presence of PO43- and HA anions as they competed with the arsenic species for adsorption sites. However, given the status of SFS as a waste material, the results obtained in this paper suggest it may be successfully reused as a very economically and environmentally sustainable solution for small waterworks requiring both As(V) and As(III) removal during drinking water treatment.


Assuntos
Arsênio , Água Potável , Poluentes Químicos da Água , Arsênio/análise , Ferro , Manganês , Areia , Poluentes Químicos da Água/análise
3.
J Environ Manage ; 274: 111156, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32798844

RESUMO

This work investigates the transport behaviour of selected organophosphorus pesticides, OPPs (chlorpyrifos, CP; chlorpyrifos-methyl, CPM; chlorfenvinphos, CF) through Danube alluvial sediment in the presence of hydrochars and biochars. The investigated hydrochar, obtained at three different temperatures (180 °C, 200 °Cand 220 °C), originated from sugar beet shreds (SBS) and Miscanthus×giganteus (MIS). Results are described by conventional advective-dispersive equation (ADE). Retardation coefficients (Rd) for all OPPs were in the range 6.2-16. Biodegradation was 4.15 and 1.80 for CPM and CP, respectively, while for CF biodegradation did not occur. The addition of carbon rich materials increases retardation of all OPPs in the range from 4 to 18 times depending on the material. Column experiment results indicated that biodegradation of OPPs occurred (up to λ = 13). In order to confirm that biodegradation occurred in the column experiments, we isolated OPPs degrading microorganisms for the first time from the alluvial sediment. A strain capable of degrading CP and CPM was isolated and identified as Bacillus megaterium BD5 based on biochemical properties, MALDI TOF and 16S rRNA analysis (99.54% identity). The results demonstrate that hydrochars, biochars and isolated degrading bacteria may be effective agents for reducing the mobility of or removing OPPs in contaminated soils or sediments.


Assuntos
Praguicidas , Biodegradação Ambiental , Carvão Vegetal , Compostos Organofosforados , RNA Ribossômico 16S
4.
J Environ Manage ; 258: 110019, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31929060

RESUMO

Only seven regional MSWLF in Serbia are considered sanitary, while about 3500 landfills operate without proper pollution control. This paper presents a unique opportunity to evaluate the impact of a closed landfill, and a new sanitary landfill, which are located next to each other. The following methodologies for the landfill impact assessment were applied, based on data from 2012 to 2017: Landfill water pollution index (LWPI) and Nemerow index (PIGW) for groundwater, and the geo-accumulation (Igeo) and ecological risk (ERi) indices and several PAH ratios for soil. The performance of the leachate control system was evaluated using two adapted pollution indices: LPI and the Nemerow index (PIL). According to the obtained LWPI and PIGW values, the quality of groundwater at the new landfill is improving (LWPI = 1.05-2.62; PIGW = 0.52-1.29), while no significant changes were observed for the old landfill (LWPI = 3.06-5.13; PIGW = 2.03-4.78). High concentrations of ammonia nitrogen (1.01-22.74 mg/l), Fe (0.76-57.11 mg/l), Ni (5.80-230.09 µg/l), Pb (4.2-202.4 µg/l) and ∑PAH16 (150.93-189.55 ng/l) show the strong influence of the landfill on the groundwater quality at the old landfill, indicating the need for additional remediation action. High concentrations of Ni (21.9-133.0 mg/kg) and Cr (8.5-277.0 mg/kg) in the analyzed soil compared to other studies, as well as moderate Igeo values (IgeoNi = 0.36-1.88; IgeoCr = -1.20-1.52), raise concern and suggest the need for further monitoring. The high ERi (158.6-295.0) and Igeo values (0.91-2.30) of Hg show significant potential ecological risk. LPI and PIL values for early methanogenic phase leachate demonstrates the need to improve the leachate treatment system. The monitoring data and applied pollution indices indicate that Cr and As should be added to the EU Watch List of emerging substances, at least regarding EU potential candidate countries.


Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Monitoramento Ambiental , Sérvia , Resíduos Sólidos , Instalações de Eliminação de Resíduos
5.
J Environ Sci (China) ; 98: 134-142, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33097144

RESUMO

The characteristics of the Danube river alluvial sediment are of great importance in assessing the risk for transport of pollutants to drinking water sources. Characterization of the sediment column layers has shown that the alluvial sediment, sampled near the city of Novi Sad, is a mesoporous sandy material with certain differences in the properties of individual layers. In order to investigate the sorption mechanisms of four chlorinated phenols (CPs) on the alluvial deposit, static sorption experiments were performed at pH 4, 7 and 10. The results of sorption experiments, confirmed by principal components analysis sugest different mechanisms govern the sorption process at different pH conditions. This can be attributed to the molecular characteristics of CPs, geosorbent properties and to variations in the surface charge of the sorbent at different pH conditions.


Assuntos
Sedimentos Geológicos , Fenóis , Adsorção , Cidades , Rios
6.
Artigo em Inglês | MEDLINE | ID: mdl-30688160

RESUMO

Granular activated carbon (GAC) was modified with Fe-Mn binary oxide to produce a novel effective hybrid adsorbent (GAC-FeMn) for simultaneous removal of As(III) and As(V) from water. After characterization (including BET, SEM/EDS and XRD analyses) of the raw and modified GAC, FTIR analysis before and after As removal showed that ligand exchange was the major mechanism for As removal on GAC-FeMn. Sorption kinetics followed pseudo-second order kinetics for both As(III) and As(V) and were not controlled by intraparticle diffusion. Batch equilibrium experiments yielded adsorption capacities for As(III) and As(V) of 2.87 and 2.30 mg/g, and demonstrated that better sorption was achieved at low pH. Of the competitive anions investigated (PO43-, SiO32-, CO32-, SO42-, NO3-, Cl-), phosphate had the greatest negative effect on As(III) and As(V) adsorption. Three sorption/desorption cycles were conducted in continuous column tests with a real arsenic contaminated groundwater, with subsequent TCLP leaching tests confirming the stability of the spent sorbent. In the column tests, breakthrough curves were also obtained for phosphates, which were present at a relatively high concentration (1.33 mg/L) in the investigated groundwater. The phosphates limited the effective operational bed life of GAC-FeMn for arsenic removal. Nonetheless, the maximum arsenic adsorption capacities for GAC-FeMn obtained by the Thomas model during the three sorption cycles were high, ranging from 18.8 to 29.8 mg/g, demonstrating that even under high phosphate loads, with further process improvements, GAC-FeMn may provide an excellent solution for the economic removal of arsenic from real groundwaters.


Assuntos
Arsênio/análise , Carvão Vegetal/química , Ferro/química , Manganês/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Água Subterrânea/química , Concentração de Íons de Hidrogênio , Cinética , Óxidos/química , Fosfatos/análise
7.
J Environ Manage ; 214: 9-16, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29518600

RESUMO

Due to the anaerobic nature of aquatic sediments, the anaerobic treatment of sediments utilizing already present microflora represents an interesting treatment option. Contaminated sediment can contain a variety of organic contaminants, with easily degradable organics usually present in the higher amounts, along with traces of specific organic pollutants (total petroleum hydrocarbons and polycyclic aromatic hydrocarbons). This study applies a comprehensive approach to contaminated sediment treatment which covers all the organic contaminants present in the sediment. The aim of this study was to (1) evaluate the anaerobic treatment of aquatic sediment highly loaded with easily degradable organics via determination of potential biogas and methane production, and (2) assess possibilities of using anaerobic treatment for the degradation of specific organic pollutants in order to reduce the risks posed by the sediment. In order to promote the methanogenic conditions of the indigenous microflora in the sediment, the addition of co-substrates acetate and glucose was investigated. The results, expressed as mL biogas produced per volatile solids content in sediment (VSadded) indicate that the addition of the co-substrate has a significant impact on biogas production potential (58.7 and 55.1 mL/g VSadded for acetate and glucose co-substrate addition respectively, and 14.6 mL/g VSadded for the treatment without co-substrate addition). Theoretical biochemical methane potential was assessed by Gompertz model and Chemical oxygen demand model. The Gompertz model fit better for all the applied treatments, and was capable of predicting the final productivity of biogas and methane in the first 30 days with a relative error of less than 14%. From the aspects of specific organic pollutants, total petroleum hydrocarbon degradation was promoted by co-substrate addition (degradations of 75% and 60% achieved by acetate and glucose co-substrate addition, compared to 45% for the treatment without co-substrate addition). Polycyclic aromatic hydrocarbons were reduced by significant amounts (84-87%) in all the applied treatments, but the addition of co-substrate did not further improve their degradation.


Assuntos
Biodegradação Ambiental , Sedimentos Geológicos/química , Hidrocarbonetos Policíclicos Aromáticos , Biocombustíveis , Metano , Petróleo
8.
J Environ Manage ; 118: 153-60, 2013 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-23428464

RESUMO

Natural organic matter (NOM) in raw water can contribute in many ways to the poor quality of drinking water, including the formation of disinfection byproducts such as trihalomethanes (THM) and haloacetic acids (HAA) during disinfection. This paper investigates the role of individual NOM fractions on changes in THM and HAA formation during coagulation with iron chloride (FeCl3) and a combination of polyaluminium chloride and iron chloride (FeCl3/PACl). The dissolved organic carbon (DOC) in the raw water and after coagulation was fractionated into four fractions, based on their hydrophobicity. Fractionation showed that most of the DOC (68%) in the raw water comes from the fulvic acid fraction, yielding 41% of the total THM precursors and 21% of the total HAA precursors. Both coagulants remove the humic acid fraction, but result in different changes to the reactivity of the remaining NOM fractions towards THM and HAA formation, indicating that coagulation occurs by different pathways, depending upon the type of coagulant used. In particular, significant changes in the reactivities of the hydrophilic acidic and non-acidic fractions were observed.


Assuntos
Acetatos/química , Cloroacetatos/química , Substâncias Húmicas/análise , Trialometanos/química , Purificação da Água , Hidróxido de Alumínio/química , Cromatografia , Água Potável/química , Compostos Ferrosos/química , Espectrofotometria Ultravioleta , Qualidade da Água
9.
Artigo em Inglês | MEDLINE | ID: mdl-21806450

RESUMO

The objective of this research was to investigate the impact of the hydrocarbon type and concentration, as well as the total effect of the natural weathering process to hydrocarbon biodegradability in sandy soil and the environment. In this experiment, sandy soil was separately contaminated with 0.5%, 1.0%, 2.0% and 3.5% of diesel and crude oils. Oil contaminated soil was taken from the Oil Refinery dumping sites after 9 years of weathering, and its concentration was adjusted to the above-mentioned levels. The biodegradation process was monitored by measuring CO(2), evolution rate, hydrocarbon degradation rate and dehydrogenase activity. The favourable concentration ranges for the soil contaminated with diesel oil were 1.0%, with concentrations at about 2.0% causing slightly adverse effects to CO(2) production which was overcome after 2 weeks, and with 3.5% diesel oil causing significant toxicity. For soil contaminated with crude oil, 2.0% was found to be optimum for effective biodegradation, with 3.5% crude oil also causing adverse effects to CO(2) production, although less so than the same concentration of diesel oil. No adverse effect was obtained for any concentration of the weathered oil, as after the weathering process, the remaining contaminants in the soil were mostly poorly degradable constituents like asphaltenes, resins etc. It has been proposed that such residual material from oil degradation is analogous to, and can even be regarded as, humic material. Due to its inert characteristics, insolubility and similarity to humic materials it is unlikely to be environmentally hazardous.


Assuntos
Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Dióxido de Carbono/metabolismo , Oxirredutases/metabolismo , Petróleo , Solo/química
10.
Recent Pat Nanotechnol ; 15(3): 197-224, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33371841

RESUMO

BACKGROUND: Globally, around 150 million people are still supplied with arsenic contaminated drinking water. The groundwaters effected often contain problematic concentrations of natural organic matter (NOM), which plays an important role in releasing As into the aquifer. Thus, this review explores the recent literature relating to the application of various nanomaterials to solve these drinking water supply problems and highlights the work that still needs to be done. METHODS: After an extensive initial search patent papers were selected based on their quality and relevance to the topic of this review: the use of magnetic nanomaterials based on pure magnetic materials, magnetic composites of carbon/graphene/biochars, polymeric matrices, metal-organic frameworks and mixed-oxide magnetic nanocomposites, as As adsorbents and as photocatalysts for NOM removal. RESULTS: 160 papers relating to the application of nanomaterials for As removal were reviewed and 38 papers covering photocatalysts for NOM removal. These papers were organised by type of nanomaterial, and their important findings summarised. Although many authors have demonstrated effective solutions in the laboratory, the following areas still need to be addressed: the challenges posed by larger pilot and full scale continuously operated processes; the treatment of complex natural water matrices; which technologies will be required to economically separate nanoparticles from the treated water; whether the nanoparticles will be more economically and environmentally sustainable than other techniques available. CONCLUSION: Despite these significant gaps in the literature, the body of work carried out thus far, as summarised in this review paper, strongly suggests that full scale treatment solutions applying (magnetic) nanomaterials may prove highly effective in the future for both arsenic and NOM removal.

11.
Environ Sci Pollut Res Int ; 28(42): 59416-59429, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33415621

RESUMO

Microplastics are ubiquitous in aqueous media, and the importance of considering their impact on the behaviour of other compounds in water has often been highlighted. This work thus investigates the adsorption mechanism of six priority substances (as defined by European Union legislation: trichlorobenzenes (1,2,3-TeCB, 1,3,5-TeCB, 1,2,4-TeCB), pentachlorobenzene (PeCB), hexachlorobenzene (HeCB), and trifluralin (TFL)) on primary polyethylene (PE) microplastics (polyethylene standard and polyethylene microparticles isolated from two personal care products) in Danube river water and a synthetic matrix. The maximum adsorbed amounts of the compounds investigated on PEs ranged from 227 µg/g for 1,2,3-TeCB to 333 µg/g for TFL. Equilibrium data was analysed using five isotherm models, with the best fit being described by the Langmuir model and the Dubinin-Radushkevich model indicating chemisorption as the likely sorption mechanism. In general, the Langmuir model showed that the investigated compounds will be better adsorbed on PEs in real river water, with the exception of 1,3,5-TeCB on all studied PEs, where the model predicts better sorption in the synthetic matrix. Compound characteristics and the polymer properties were the most important factors affecting the sorption process, while a significant matrix effect was also observed on PE behaviour. The fact that polyethylene particles derived from personal care products showed greater adsorption capacities than virgin PE demonstrates the necessity of investigating real-world PE samples when assessing the potential impact of MPs in the environment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Adsorção , Clorobenzenos , Plásticos , Polietileno , Trifluralina , Poluentes Químicos da Água/análise
12.
Colloids Surf B Biointerfaces ; 208: 112038, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34454363

RESUMO

Biochar (BC) has attracted much attention as an environmentally friendly material for application in wastewater treatment. In this study, a suitability of wood-derived BC as a support for covalent immobilization of horseradish peroxidase (HRP) across glutaraldehide as crosslinker, known for the capability to remove phenol from water, was investigated. The efficiency of the immobilized HRP in removal of phenol (2 mM) from water at different reaction conditions (varying dosages of polyethylene glycol (PEG300) 0-750 mg/L; H2O2 1.5-3.5 mM, as well as reaction time 5-120 min) and the general toxicity of bio-treated water (Allium cepa test) were measured. All analyzes were performed for free enzyme as well. The immobilized enzyme showed the highest activity at temperature 30 °C and pH 7.0. The greatest efficiency of immobilized enzyme in phenol removing (90 %) was obtained by applying 2.5 mM H2O2 and 1.5 mg/L of PEG300 at pH 7.0 after 2 h of reaction period. After 4 washings, immobilized HRP retained more than 79 % activity with phenol removal of 64 %. Utilizing immobilized enzyme significantly reduces the toxicity of the tested water (80 %), which further suggested that it might be considered as an environmentally acceptable process for wastewater treatment. Possible degradation products remained in treated water were analyzed in water samples by liquid and gas chromatography with mass spectrometry, including also analysis of volatiles by solid phase microextraction technique; different phenol-base compounds were detected.


Assuntos
Fenol , Água , Carvão Vegetal , Enzimas Imobilizadas , Cromatografia Gasosa-Espectrometria de Massas , Peroxidase do Rábano Silvestre , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Fenóis
13.
Nanomaterials (Basel) ; 11(3)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802626

RESUMO

This work is focused on the kinetics, mineralization, and toxicological assessments of the antidepressant drug amitriptyline hydrochloride (AMI) in UV or solar illuminated aqueous suspensions of ZnO, TiO2 Degussa P25, and TiO2 Hombikat. ZnO was proven to be the most effective photocatalyst, and it was used for all further experiments under solar irradiation. The highest reaction rate was observed at 1.0 mg/mL of catalyst loading. In the investigated initial concentration range (0.0075-0.3000 mmol/L), the degradation rate of AMI increased with the increase of initial concentration in the investigated range. The effects of H2O2, (NH4)2S2O8, and KBrO3, acting as electron acceptors, along with molecular oxygen were also studied. By studying the effects of ethanol and NaI as a hydroxyl radical and hole scavenger, respectively, it was shown that the heterogeneous catalysis takes place mainly via free hydroxyl radicals. In the mineralization study, AMI photocatalytic degradation resulted in ~30% of total organic carbon (TOC) decrease after 240 min of irradiation; acetate and formate were produced as the organic intermediates; NH4+, NO3-, NO2- ions were detected as nitrogen byproducts. Toxicity assessment using different mammalian cell lines, showed that H-4-II-E was the most sensitive one.

14.
Environ Technol ; 42(22): 3475-3486, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32075547

RESUMO

This paper investigates the fate of natural organic matter (NOM) during the full-scale drinking water treatment plant supplied by Danube river bank filtration. After the recent reconstruction of the plant, special attention was devoted to the effects of ozone dose and granulated activated carbon (GAC) filtration on the formation and behaviour of oxidation by-products (carbonyl compounds and bromate), as well as carbonaceous and nitrogenous chlorination by-products. For the oxidation of aromatic NOM moieties that absorb light at UV254, a lower ozone dose (1.0 g O3/m3) is sufficient, whereas to achieve a measurable reduction (about 20%) of total organic carbon, an ozone dose of 1.5 g O3/m3 is required. The content of carbonyl compounds in the water after ozonation increases relative to the content before oxidation treatment, and is up to 12 times higher in the case of aldehydes and up to 2 times higher in the case of carboxylic acids. Seasonal variations, including changes in temperature and the amount of precipitation, were also shown to affect the content of organic matter in the raw water, with slight effects on the quality of the treated water. In the winter, the organic matter content is slightly higher, meaning their transformation products aldehydes and carboxylic acids, are also higher during the winter than the summer.


Assuntos
Água Potável , Ozônio , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Poluentes Químicos da Água/análise
15.
Environ Technol ; 42(16): 2527-2539, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31854235

RESUMO

Arsenic contamination of drinking water sources is a widespread global problem. Of the As species commonly found in groundwater, As(III) is generally more mobile and toxic than As(V). In this work, magnetic nanoparticles (MNp) modified with Fe-Mn binary oxide (MNp-FeMn) were synthesized in order to develop a low cost adsorbent with high removal efficiency for both arsenic species which can be readily separated from water using a magnetic field. MNp-FeMn were characterized using different techniques including SEM/EDS, XRD and BET analysis. Adsorption of As(III) and As(V) on MNp-FeMn was studied as a function of initial arsenic concentration, contact time, pH, and coexisting anions. The BET specific surface area of MNp-FeMn was 109 m2/g and maghemite (γ-Fe2O3) was the dominant precipitated phase. The adsorption rate of As(III) and As(V) on MNp-FeMn was controlled by surface diffusion. FTIR analysis confirms that surface complexation through ligand exchange was the main mechanism for As(III) and As(V) removal on MNp-FeMn, with As(III) conversion to As(V) occurring on the adsorbent surface. The maximal adsorption capacity qmax of MNp for As(III) (26 mg/g) was significantly improved after modification with Fe-Mn binary oxide (56 mg/g), while qmax for As(V) was 51 and 54 mg/g, respectively. PO43-, SiO32- and CO32- reduced As(III) and As(V) uptake at higher concentrations. MNp-FeMn can be easily regenerated and reused with only a slight reduction in adsorption capacity. The high oxidation and sorption capacity of MNp-FeMn, magnetic properties and reusability, suggest this material is a highly promising adsorbent for treatment of arsenic contaminated groundwater.


Assuntos
Arsênio , Nanopartículas de Magnetita , Poluentes Químicos da Água , Purificação da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Óxidos , Poluentes Químicos da Água/análise
16.
Environ Sci Pollut Res Int ; 28(42): 59165-59179, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32588311

RESUMO

The presence of a large number of micropollutants in the environment, including priority and emerging substances, poses a significant risk to surface and groundwater quality. Among them, trichlorobenzenes are widely used in the syntheses of dyes, pesticides, solvents, and other chemicals and have been identified as priority pollutants by the European Water Framework Directive. The main goal of this study was to investigate the behavior of 1,2,3-trichlorobenzene (TCB) during the sulfate radical-based advanced oxidation processes (SR-AOPs) involving UV activation of persulfate or peroxymonosulfate (UV/S2O82- and UV/HSO5- processes). For this purpose, TCB was subjected to SR-AOPs in synthetic water matrices containing humic acids or hydrogencarbonate and natural water samples and a comparative evaluation of the degradation process was made. The toxicity of the oxidation by-products was also assessed. The evaluation of TCB degradation kinetics results using principal component analysis indicates that the efficacy of the SR-AOPs was highly dependent on the pH, initial oxidant concentration, UV fluence, and matrix characteristics. In natural waters, TCB degradation by the UV/S2O82- process proved to be most effective in acidic conditions (pH 5), while the UV/HSO5- process showed the highest efficacy in basic conditions (pH 9.5), achieving a maximum TCB degradations of 97-99%. The obtained results indicate that UV/S2O82- and UV/HSO5- as new generation oxidation processes have significant potential for TCB removal from water and result in only minor toxicity after treatment (14-23% of Vibrio fischeri bioluminescence inhibition).


Assuntos
Poluentes Químicos da Água , Purificação da Água , Clorobenzenos , Peróxido de Hidrogênio , Oxirredução , Peróxidos , Sulfatos , Raios Ultravioleta , Água , Poluentes Químicos da Água/análise
17.
Water Sci Technol ; 61(12): 3169-77, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20555214

RESUMO

In the central Banat region (Northern Serbia), groundwater is used as a drinking water source. Raw water originates from a 40-80 m and 100-150 m deep layer. It contains a high amount of natural organic matter (DOC = 9.17+/-0.87 mg C/L) with a trihalomethanes formation potential of 448+/-88.2 microg/L and a haloacetic acid formation potential of 174+/-68.9 microg/L. A high amount of arsenic (86.0+/-3.4 microg/L) is also found in this water. This study used a pilot-scale system to investigate the possibilities of combining polyaluminium chloride and ferrous-chloride to remove disinfection by-products precursors and arsenic by coagulation. Two treatment trains with different pre-treatment steps were investigated (ozone vs. H2O2/O3). For the final water polishing, filtration with granulated activated carbon (GAC) was applied. Both investigated treatment lines achieved a satisfactory chemical water quality. Simulation of disinfection conditions was performed and the contents of trihalomethanes and haloacetic acids measured, to investigate whether the chemical quality of the water remained satisfactory over a 48 hour period.


Assuntos
Arsênio/isolamento & purificação , Meios de Transporte/normas , Abastecimento de Água/normas , Cloreto de Alumínio , Compostos de Alumínio , Cloretos , Filtração/métodos , Floculação , Nefelometria e Turbidimetria , Ozônio/análise , Projetos Piloto , Sérvia
18.
Artigo em Inglês | MEDLINE | ID: mdl-20390878

RESUMO

This paper presents a comparison of the efficacy of three different coagulants (polyaluminium chloride (PACl), Aluminium sulphate (Al(2)(SO(4))(3)) and ferrous chloride (FeCl(3))) for natural organic matter and arsenic (As) removal from groundwater. Coagulation efficacy was evaluated for the coagulants alone and for combinations of them (PACl/FeCl(3); Al(2)(SO(4))(3)/FeCl(3)), on the basis of changes in dissolved organic matter (DOC) and arsenic content. For single coagulants, PACl (30 mg Al/L) showed optimal efficacy for DOC removal (57%, relative to raw water). The highest arsenic reduction (< 5 microg As/L in coagulated water) was achieved when a very high 300 mg/L dose of FeCl(3) was used. However, if PACl (30 mg Al/L) and FeCl(3) (10 mg FeCl(3)/L) are combined, the efficacy of DOC removal increases compared to PACl and FeCl(3) alone under similar doses (66% decrease in DOC relative to raw water). The DOC and As contents of the coagulated water after application of these doses were 2.26 mg C/L and 9.7 microg/L, respectively, compared to 6.44 mg C/L and 60.5 microg As/L measured in the raw groundwater. The combination of Al(2)(SO(4))(3) and FeCl(3) did not show any improvement in DOC and As removal efficacy relative to using those coagulants alone.


Assuntos
Compostos de Alúmen/química , Arsênio/química , Compostos Férricos/química , Sais/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Hidróxido de Alumínio/química , Arsênio/isolamento & purificação , Compostos Ferrosos/química , Sérvia
19.
Chemosphere ; 220: 1033-1040, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33395789

RESUMO

Sediment represents a sink for toxic and persistent chemicals such as hexachlorobenzene (HCB) and lindane (γ-HCH). This paper investigates the possibility of reducing the risks associated with the presence of these pollutants in sediments by amending the sediment with carbon-rich materials (activated carbon (AC) and humus (HC)) to sequester the contaminants and render them biologically unavailable. The effects of the dose and contact time between the sediment and the carbon-rich amendments on the effectiveness of the detoxification are estimated. Four doses of carbon-rich amendments (0.5-10%) and four equilibration contact times (14-180 days) were investigated. Results have shown that the bioavailable fraction of γ-HCH and HCB decreased significantly in comparison to the unamended sediment. Regarding the AC amendments, almost 100% for both compounds; and for HC amendments around 95% for γ-HCH, and 75% for HCB. Aging caused further reductions in the bioavailable fraction, compared to the untreated sediment. Phytotoxicity tests showed that Zea mays accumulated significantly higher amount of γ-HCH and HCB from unamended sediment, comparing to Cucurbita pepo and Lactuca sativa. Toxicity of HC and AC amended sediment assessed by Vibrio fischeri luminescence inhibition test and by measuring Zea mays germination and biomass yield was significantly reduced in the amended sediment samples. γ-HCH and HCB accumulation in the Zea mays biomass in the unamended sediment were a significantly higher than in the all HC and AC amended sediment. Both sorbents show potential to be used as remediation agents for organically contaminated sediment, but AC exhibited the better performance.

20.
J Hazard Mater ; 312: 150-158, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27031919

RESUMO

Interactions between arsenic and natural organic matter (NOM) are key limiting factors during the optimisation of drinking water treatment when significant amounts of both must be removed. This work uses Response Surface Methodology (RSM) to investigate how they interact during their simultaneous removal by iron chloride coagulation, using humic acid (HA) as a model NOM substance. Using a three factor Box-Behnken experimental design, As and HA removals were modelled, as well as a combined removal response. ANOVA results showed the significance of the coagulant dose for all three responses. At high initial arsenic concentrations (200µg/l), As removal was significantly hindered by the presence of HA. In contrast, the HA removal response was found to be largely independent of the initial As concentration, with the optimum coagulant dose increasing at increasing HA concentrations. The combined response was similar to the HA removal response, and the interactions evident are most interesting in terms of optimising treatment processes during the preparation of drinking water, highlighting the importance of utilizing RSM for such investigations. The combined response model was successfully validated with two different groundwaters used for drinking water supply in the Republic of Serbia, showing excellent agreement under similar experimental conditions.


Assuntos
Arsênio/química , Água Potável/química , Substâncias Húmicas/análise , Poluentes Químicos da Água/química , Purificação da Água , Água Subterrânea/química , Sérvia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA