Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 105(3): 1063-1078, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33427933

RESUMO

Members of the human gut microbiota use glycoside hydrolase (GH) enzymes, such as ß-galactosidases, to forage on host mucin glycans and dietary fibres. A human faecal metagenomic fosmid library was constructed and functionally screened to identify novel ß-galactosidases. Out of the 16,000 clones screened, 30 ß-galactosidase-positive clones were identified. The ß-galactosidase gene found in the majority of the clones was BAD_1582 from Bifidobacterium adolescentis, subsequently named bgaC. This gene was cloned with a hexahistidine tag, expressed in Escherichia coli and His-tagged-BgaC was purified using Ni2+-NTA affinity chromatography and size filtration. The enzyme had optimal activity at pH 7.0 and 37 °C, with a wide range of pH (4-10) and temperature (0-40 °C) stability. It required a divalent metal ion co-factor; maximum activity was detected with Mg2+, while Cu2+ and Mn2+ were inhibitory. Kinetic parameters were determined using ortho-nitrophenyl-ß-D-galactopyranoside (ONPG) and lactose substrates. BgaC had a Vmax of 107 µmol/min/mg and a Km of 2.5 mM for ONPG and a Vmax of 22 µmol/min/mg and a Km of 3.7 mM for lactose. It exhibited low product inhibition by galactose with a Ki of 116 mM and high tolerance for glucose (66% activity retained in presence of 700 mM glucose). In addition, BgaC possessed transglycosylation activity to produce galactooligosaccharides (GOS) from lactose, as determined by TLC and HPLC analysis. The enzymatic characteristics of B. adolescentis BgaC make it an ideal candidate for dairy industry applications and prebiotic manufacture.Key points• Bifidobacterium adolescentis BgaC ß-galactosidase was selected from human faecal metagenome.• BgaC possesses sought-after properties for biotechnology, e.g. low product inhibition.• BgaC has transglycosylation activity producing prebiotic oligosaccharides. Graphical Abstract.


Assuntos
Bifidobacterium adolescentis , Galactose , Humanos , Concentração de Íons de Hidrogênio , Lactose , Metagenoma , Oligossacarídeos , Temperatura , beta-Galactosidase/genética
2.
J Nanobiotechnology ; 9: 57, 2011 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-22152062

RESUMO

BACKGROUND: Light-directed in situ synthesis of DNA microarrays using computer-controlled projection from a digital micromirror device--maskless array synthesis (MAS)--has proved to be successful at both commercial and laboratory scales. The chemical synthetic cycle in MAS is quite similar to that of conventional solid-phase synthesis of oligonucleotides, but the complexity of microarrays and unique synthesis kinetics on the glass substrate require a careful tuning of parameters and unique modifications to the synthesis cycle to obtain optimal deprotection and phosphoramidite coupling. In addition, unintended deprotection due to scattering and diffraction introduce insertion errors that contribute significantly to the overall error rate. RESULTS: Stepwise phosphoramidite coupling yields have been greatly improved and are now comparable to those obtained in solid phase synthesis of oligonucleotides. Extended chemical exposure in the synthesis of complex, long oligonucleotide arrays result in lower--but still high--final average yields which approach 99%. The new synthesis chemistry includes elimination of the standard oxidation until the final step, and improved coupling and light deprotection. Coupling Insertions due to stray light are the limiting factor in sequence quality for oligonucleotide synthesis for gene assembly. Diffraction and local flare are by far the largest contributors to loss of optical contrast. CONCLUSIONS: Maskless array synthesis is an efficient and versatile method for synthesizing high density arrays of long oligonucleotides for hybridization- and other molecular binding-based experiments. For applications requiring high sequence purity, such as gene assembly, diffraction and flare remain significant obstacles, but can be significantly reduced with straightforward experimental strategies.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos/métodos , Oligonucleotídeos/síntese química , Técnicas de Síntese em Fase Sólida/métodos , Sequência de Bases , Vidro/química , Cinética , Hibridização de Ácido Nucleico , Fotoquímica/métodos
3.
PLoS One ; 6(7): e22177, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21799789

RESUMO

Cy3 and Cy5 are among the most commonly used oligonucleotide labeling molecules. Studies of nucleic acid structure and dynamics use these dyes, and they are ubiquitous in microarray experiments. They are sensitive to their environment and have higher quantum yield when bound to DNA. The fluorescent intensity of terminal cyanine dyes is also known to be significantly dependent on the base sequence of the oligonucleotide. We have developed a very precise and high-throughput method to evaluate the sequence dependence of oligonucleotide labeling dyes using microarrays and have applied the method to Cy3 and Cy5. We used light-directed in-situ synthesis of terminally-labeled microarrays to determine the fluorescence intensity of each dye on all 1024 possible 5'-labeled 5-mers. Their intensity is sensitive to all five bases. Their fluorescence is higher with 5' guanines, and adenines in subsequent positions. Cytosine suppresses fluorescence. Intensity falls by half over the range of all 5-mers for Cy3, and two-thirds for Cy5. Labeling with 5'-biotin-streptavidin-Cy3/-Cy5 gives a completely different sequence dependence and greatly reduces fluorescence compared with direct terminal labeling.


Assuntos
Carbocianinas/química , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Sequência de Bases , Biotina/análogos & derivados , Biotina/metabolismo , Carbocianinas/metabolismo , DNA/genética , DNA/metabolismo , Genômica , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , Compostos Organofosforados/metabolismo , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA