Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Reprod Biol Endocrinol ; 21(1): 88, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37749573

RESUMO

Autophagy is a highly conserved, lysosome-dependent biological mechanism involved in the degradation and recycling of cellular components. There is growing evidence that autophagy is related to male reproductive biology, particularly spermatogenic and endocrinologic processes closely associated with male sexual and reproductive health. In recent decades, problems such as decreasing sperm count, erectile dysfunction, and infertility have worsened. In addition, reproductive health is closely related to overall health and comorbidity in aging men. In this review, we will outline the role of autophagy as a new player in aging male reproductive dysfunction and prostate cancer. We first provide an overview of the mechanisms of autophagy and its role in regulating male reproductive cells. We then focus on the link between autophagy and aging-related diseases. This is followed by a discussion of therapeutic strategies targeting autophagy before we end with limitations of current studies and suggestions for future developments in the field.


Assuntos
Disfunção Erétil , Neoplasias da Próstata , Humanos , Masculino , Sêmen , Autofagia , Envelhecimento
2.
Mol Biol Rep ; 50(11): 9037-9046, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37725284

RESUMO

BACKGROUND: Gene regulation by microRNA (miRNA) is central in T lymphocytes differentiation processes. Here, we investigate miRNA-29b (miR-29b) roles in the reprogramming of T cell differentiation, which can be a promising therapeutic avenue for various types of inflammatory disorders such as rheumatoid arthritis and multiple sclerosis. METHODS AND RESULTS: Adipose Mesenchymal Stem Cell-derived exosomes (AMSC-Exo) enriched with miR-29b were delivered into naive CD4+ T (nCD4+) cells. The expression level of important transcription factors including RAR-related orphan receptor gamma (RORγt), GATA3 binding protein (GATA3), T-box transcription factor 21, and Forkhead box P3 was determined by quantitative Real-Time PCR. Moreover, flow cytometry and Enzyme-linked Immunosorbent Assay were respectively used to measure the frequency of T regulatory cells and the levels of cytokines production (Interleukin 17, Interleukin 4, Interferon-gamma, and transforming growth factor beta. This study indicates that the transfection of miR-29b mimics into T lymphocytes through AMSC-Exo can alter the CD4+ T cells' differentiation into other types of T cells. CONCLUSIONS: In conclusion, AMSC-Exo-based delivery of miR-29b can be considered as a new fascinating avenue for T cell differentiation inhibition and the future treatment of several inflammatory disorders.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Exossomos/genética , Exossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Linfócitos T Reguladores/metabolismo , Diferenciação Celular/genética , Células-Tronco Mesenquimais/metabolismo
3.
Phytother Res ; 36(1): 189-213, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34697839

RESUMO

Curcumin is a phytochemical isolated from Curcuma longa with potent tumor-suppressor activity, which has shown significant efficacy in pre-clinical and clinical studies. Curcumin stimulates cell death, triggers cycle arrest, and suppresses oncogenic pathways, thereby suppressing cancer progression. Cisplatin (CP) stimulates DNA damage and apoptosis in cancer chemotherapy. However, CP has adverse effects on several organs of the body, and drug resistance is frequently observed. The purpose of the present review is to show the function of curcumin in decreasing CP's adverse impacts and improving its antitumor activity. Curcumin administration reduces ROS levels to prevent apoptosis in normal cells. Furthermore, curcumin can inhibit inflammation via down-regulation of NF-κB to maintain the normal function of organs. Curcumin and its nanoformulations can reduce the hepatoxicity, neurotoxicity, renal toxicity, ototoxicity, and cardiotoxicity caused by CP. Notably, curcumin potentiates CP cytotoxicity via mediating cell death and cycle arrest. Besides, curcumin suppresses the STAT3 and NF-ĸB as tumor-promoting pathways, to enhance CP sensitivity and prevent drug resistance. The targeted delivery of curcumin and CP to tumor cells can be mediated nanostructures. In addition, curcumin derivatives are also able to reduce CP-mediated side effects, and increase CP cytotoxicity against various cancer types.


Assuntos
Antineoplásicos , Curcumina , Neoplasias , Antineoplásicos/farmacologia , Apoptose , Cisplatino/farmacologia , Curcumina/farmacologia , Humanos , Neoplasias/tratamento farmacológico
4.
Reumatologia ; 60(1): 26-34, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645413

RESUMO

Objectives: Juvenile idiopathic arthritis (JIA) is a childhood autoimmune rheumatoid disease. Past studies have confirmed that JIA is a complex disease, which means that genes and environmental factors affect the aetiology of the disease. In this study, we analysed the expression of interleukin 32, forkhead box P3 (FOXP3), methyl-CpG binding domain protein 1 (MBD1), and methyl-CpG-binding protein 2 (MECP2) in peripheral blood mononuclear cells of children with JIA in comparison with the expression of those in healthy children. Interleukin 32 is an inflammatory factor, FOXP3 is a transcription factor, and MBD1 and MECP2 are binding proteins that bind to the methylated deoxyribonucleic acid (DNA). Material and methods: We collected blood from JIA patients who had been diagnosed and classified into clinical subtypes by a rheumatologist from the division of paediatric rheumatology. Healthy children, whose clinical and preclinical analysis confirmed they had no disease and just came to the hospital for a check-up or minor surgical procedures were considered as a control group. Age and gender were matched in patients and the control group. Total ribonucleic acid was extracted from blood, and cDNA was synthesized. Eventually, the transcript levels were analysed by quantitative polymerase chain reaction, and statistical analysis was carried out. Results: Statistical analysis of gene expressions in young females affected by JIA demonstrated that MECP2 and FOXP3 were increased significantly (p-value = 0.002 and 0.05, respectively). Interleukin 32 gene expression was also increased (p-value = 0.14), whereas MBD1 gene expression was decreased (p-value = 0.06); however, these changes in the expression of all 4 genes were not significant in young males. Conclusions: Different expression levels of the mentioned genes between affected young females and males result from hormones in both gender and also methotrexate (MTX) drug. Also, the reason affected young females are more prone to JIA than males can be the lower level of FOXP3 expression in healthy females than healthy males.

5.
Biotechnol Bioeng ; 118(10): 3669-3690, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34170520

RESUMO

The serious drawbacks of the conventional treatment of pancreatic ductal adenocarcinoma (PDAC) such as nonspecific toxicity and high resistance to chemo and radiation therapy, have prompted the development and application of countless small interfering RNA (siRNA)-based therapeutics. Recent advances in drug delivery systems hold great promise for improving siRNA-based therapeutics and developing a new class of drugs, known as nano-siRNA drugs. However, many fundamental questions, regarding toxicity, immunostimulation, and poor knowledge of nano-bio interactions, need to be addressed before clinical translation. In this review, we provide recent achievements in the design and development of various nonviral delivery vehicles for pancreatic cancer therapy. More importantly, codelivery of conventional anticancer drugs with siRNA as a new revolutionary pancreatic cancer combinational therapy is completely discussed.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Neoplasias Pancreáticas/tratamento farmacológico , RNA Interferente Pequeno/uso terapêutico , Animais , Humanos
6.
Pharmacol Res ; 171: 105777, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34298112

RESUMO

Breast cancer is the most common and deadliest cancer in women worldwide. Although notable advances have been achieved in the treatment of breast cancer, the overall survival rate of metastatic breast cancer patients is still considerably low due to the development of resistance to breast cancer chemotherapeutic agents and the non-optimal specificity of the current generation of cancer medications. Hence, there is a growing interest in the search for alternative therapeutics with novel anticancer mechanisms. Recently, antimicrobial peptides (AMPs) have gained much attention due to their cost-effectiveness, high specificity of action, and robust efficacy. However, there are no clinical data available about their efficacy. This warrants the increasing need for clinical trials to be conducted to assess the efficacy of this new class of drugs. Here, we will focus on the recent progress in the use of AMPs for breast cancer therapy and will highlight their modes of action. Finally, we will discuss the combination of AMP-based therapeutics with other breast cancer therapy strategies, including nanotherapy and chemotherapy, which may provide a potential avenue for overcoming drug resistance.


Assuntos
Peptídeos Antimicrobianos/administração & dosagem , Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Animais , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/classificação , Antineoplásicos/química , Antineoplásicos/classificação , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Sistemas de Liberação de Medicamentos , Feminino , Humanos
7.
J Hum Nutr Diet ; 34(5): 901-909, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33586811

RESUMO

BACKGROUND: Hyperinsulinaemia is considered as a major risk factor for the development of a myriad of chronic diseases. We examined the association between the dietary insulinaemic potential and the odds of non-alcoholic fatty liver disease (NAFLD) among Iranian adults. METHODS: After being subjected to a liver ultrasound, 166 patients with NAFLD and 200 controls were included in the study. The dietary intakes and the physical activity levels of the participants were evaluated using a validated semi-quantitative food frequency questionnaire and the International Physical Activity Questionnaire (short IPAQ), respectively. The insulinaemic potential of the diet was assessed by computing the scores of the Empirical Dietary Index for Hyperinsulinemia (EDIH) and the Empirical Dietary Index for Insulin Resistance (EDIR). RESULTS: Compared with the control subjects, patients with NAFLD were significantly older; had higher values for body mass index, fasting blood sugar, triglycerides, low-density lipoprotein cholesterol, total cholesterol and alanine transaminase; and were more likely to smoke. Moreover, NAFLD patients had significant lower levels of high-density lipoprotein cholesterol and were less likely to perform physical activity. The risk of NAFLD was higher in the individuals in the highest tertile of the EDIH (odds ratio [OR] = 2.79; 95% confidence interval [CI] = 1.32-5.90; p value for trend < 0.05) and EDIR (OR = 2.42; 95% CI = 1.22-4.79; p value for trend < 0.05) compared to those in the lowest tertile of these scores. CONCLUSIONS: Our study indicates that a higher dietary insulinaemic potential is associated with an increased risk of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Adulto , Índice de Massa Corporal , Estudos de Casos e Controles , Dieta , Humanos , Irã (Geográfico)/epidemiologia , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Fatores de Risco
8.
J Cell Physiol ; 234(9): 14818-14827, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30919964

RESUMO

Colorectal cancer (CRC) is known as one of the most important causes of death and mortality worldwide. Although several efforts have been made for finding new therapies, no achievements have been made in this area. Multidrug resistance (MDR) mechanisms are one of the key factors that could lead to the failure of chemotherapy. Moreover, it has been shown that various chemotherapy drugs are associated with several side effects. Hence, it seems that finding new drugs or new therapeutic platforms is required. Among different therapeutic approaches, utilization of nanoparticles (NPs) for targeting a variety of molecules such as siRNAs are associated with good results for the treatment of CRC. Targeting siRNA-mediated NPs could turn off the effects of oncogenes and MDR-related genes. In the current study, we summarized various siRNAs targeted by NPs which could be used for the treatment of CRC. Moreover, we highlighted other routes such as liposome for targeting siRNAs in CRC therapy.

9.
J Cell Biochem ; 120(9): 15671-15677, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31069826

RESUMO

The aim of this study was to assess the efficacy of resveratrol (Res) on radiosensitivity of 5-fluorouracil (5-FU) in the spheroid culture of MCF-7 breast cancer cell line using colony formation examination. Spheroids on day 9 with 300 µm diameters were treated with 20 µM resveratrol and/or 1 µM 5-FU for one volume doubling time (VDT) (42 hours) and then irradiated with 2 Gy gamma radiation (60 Co) in various groups. Then the viability of the cells and clonogenic ability were acquired by blue dye exclusion and colony formation assay, respectively. The population doubling time in the monolayer culture and the VDT of spheroid culture was 22.48 ± 0.23 hours and 42 ± 0.63 hours respectively. None of the drugs and combination of them had any effect on the viability of cells. The combination treatment of 5-FU+Res+ radiation significantly reduced the colony formation ability of spheroid cells in comparison with each treatment alone. Our results indicated that resveratrol can significantly decrease colony number of breast cancer spheroid cells treated with 5-FU in combination with gamma-rays. Thus, resveratrol as a hypoxia-inducible factor-1-alpha inhibitor increased the radiosensitization of breast cancer spheroid cells.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Fluoruracila/farmacologia , Resveratrol/farmacologia , Neoplasias da Mama/patologia , Neoplasias da Mama/radioterapia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Terapia Combinada , Feminino , Raios gama , Humanos , Células MCF-7 , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/efeitos da radiação , Esferoides Celulares/efeitos dos fármacos
10.
Clin Exp Reprod Med ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39301767

RESUMO

Objective: Several chemotherapeutic agents, including cyclophosphamide (CP) and busulfan, have been shown to interfere with spermatogenesis. Accordingly, the main objective of this study was to evaluate the potential therapeutic effects of curcumin nanoemulsion (CUR-NE) on spermatogenesis in mice with CP-induced testicular toxicity. Methods: A total of 28 adult male mice were equally divided into four groups: control, CUR-NE (30 mg/kg, daily for 5 weeks), CP (200 mg/kg, single dose), and CP+CUR-NE. Each group was evaluated regarding sperm parameters, DNA fragmentation index, chromatin maturation, reactive oxygen species (ROS) levels, and histological parameters of the testes. Serum levels of follicle-stimulating hormone (FSH), luteinizing hormone, and testosterone were also assessed in all groups. Results: In CP-induced mice, CUR-NE treatment significantly improved sperm parameters, including total sperm count, motility, morphology, and DNA integrity. CUR-NE administration was also associated with significantly higher serum levels of testosterone and FSH, as well as testis weight and volume, in the mice treated with CP. Furthermore, CUR-NE treatment significantly increased the number of spermatogonia, primary spermatocytes, round spermatids, and Leydig cells in the testicular tissue of these animals. A marked reduction in ROS levels in the testes tissue was observed following administration of CUR-NE to CP-induced mice. Conclusion: CUR-NE appears to promote spermatogenesis in mice with CP-induced testicular toxicity by reducing ROS levels, improving testicular stereological parameters, and strengthening the reproductive hormone profile.

11.
Acta Parasitol ; 69(1): 121-134, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38127288

RESUMO

BACKGROUND: Genome manipulation of Leishmania species and the creation of modified strains are widely employed strategies for various purposes, including gene function studies, the development of live attenuated vaccines, and the engineering of host cells for protein production. OBJECTIVE: Despite the introduction of novel manipulation approaches like CRISPR/Cas9 technology with significant advancements in recent years, the development of a reliable protocol for efficiently and precisely altering the genes of Leishmania strains remains a challenging endeavor. Following the successful adaptation of the CRISPR/Cas9 system for higher eukaryotic cells, several research groups have endeavored to apply this system to manipulate the genome of Leishmania. RESULTS: Despite the substantial differences between Leishmania and higher eukaryotes, the CRISPR/Cas9 system has been effectively tested and applied in Leishmania.  CONCLUSION: This comprehensive review summarizes all the CRISPR/Cas9 systems that have been employed in Leishmania, providing details on their methods and the expression systems for Cas9 and gRNA. The review also explores the various applications of the CRISPR system in Leishmania, including the deletion of multicopy gene families, the development of the Leishmania vaccine, complete gene deletions, investigations into chromosomal translocations, protein tagging, gene replacement, large-scale gene knockout, genome editing through cytosine base replacement, and its innovative use in the detection of Leishmania. In addition, the review offers an up-to-date overview of all double-strand break repair mechanisms in Leishmania.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Leishmania , Leishmania/genética , Edição de Genes/métodos , Genoma de Protozoário , Leishmaniose/parasitologia , Animais
12.
Curr Mol Med ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37594115

RESUMO

The application of monoclonal antibodies and antibody fragments with the advent of recombinant antibody technology has made notable progress in clinical trials to provide a regulated drug release and extra targeting to the special conditions in the function site. Modification of antibodies has facilitated using mAbs and antibody fragments in numerous models of therapeutic and detection utilizations, such as stimuli-responsive systems. Antibodies and antibody derivatives conjugated with diverse stimuli-responsive materials have been constructed for drug delivery in response to a wide range of endogenous (electric, magnetic, light, radiation, ultrasound) and exogenous (temperature, pH, redox potential, enzymes) stimuli. In this report, we highlighted the recent progress on antibody-conjugated stimuli-responsive and dual/multi-responsive systems that affect modern medicine by improving a multitude of diagnostic and treatment strategies.

13.
Basic Clin Androl ; 33(1): 13, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37226085

RESUMO

BACKGROUND: Obesity is regarded a global public health crisis. It has been implicated in a variety of health problems, but when it comes to male fertility, how and to what extent obesity affects it are poorly understood. Accordingly, semen samples from 32 individuals with obesity (body mass index (BMI) ≥ 30 kg/m2) and 32 individuals with normal weight (BMI: 18.5-25 kg/m2) were obtained. Here, for the first time, we examined the association between obesity, relative sperm telomere length (STL) and autophagy-related mRNA levels such as Beclin1, AMPKa1, ULK1, BAX, and BCL2. Each group was also evaluated for conventional semen parameters, sperm apoptotic changes, DNA fragmentation index (DFI), sperm chromatin maturation, and reactive oxygen species (ROS) levels. RESULTS: Based on our findings, there was a marked reduction in relative STL in individuals with obesity as compared to the normal-weight group. We also found a significant negative correlation between relative STL and age, BMI, DFI, percentage of sperm with immature chromatin, and intracellular ROS levels in patients with obesity. In the normal-weight group, relative STL was only negatively correlated with DFI and intracellular ROS levels. Regarding mRNA expression, there was considerable upregulation of Beclin1, ULK1, and BCL2 in the group with obesity compared to the normal-weight group. Obesity was also found to be associated with a considerable decline in semen volume, total sperm count, progressive motility, and viability in comparison to normal-weight individuals. Furthermore, obesity was associated with considerably higher percentages of DFI, sperm with immature chromatin, late-stage apoptosis, and elevated ROS levels. CONCLUSION: According to our findings, obesity is associated with sperm telomere shortening and aberrant autophagy-related mRNA expression. It should be emphasized that telomere shortening in sperm may be an indirect consequence of obesity due to the oxidative stress associated with the condition. Nevertheless, further investigation is required for a more comprehensive understanding.


RéSUMé: CONTEXTE: L'obésité est considérée comme une crise mondiale de santé publique. Elle a été impliquée dans divers problèmes de santé ; mais quand il s'agit de la fertilité masculine, comment et dans quelle mesure l'obésité affecte cette fertilité restent mal compris. En conséquence, des échantillons de sperme de 32 hommes obèses (indice de masse corporelle (IMC) ≥ 30 kg/m²) et de 32 hommes ayant un poids normal (IMC : 18,5 à 25 kg/m²) ont été recueillis. A été examiné dans cette étude, pour la première fois, l'association entre l'obésité, la longueur relative des télomères des spermatozoïdes (LTS), et les taux d'ARNm liés à l'autophagie tels que Beclin1, AMPKa1, ULK1, BAX et BCL2. Chaque groupe a également été évalué pour les paramètres conventionnels du sperme, les changements apoptotiques des spermatozoïdes, l'indice de fragmentation de l'ADN (DFI), la maturation de la chromatine des spermatozoïdes et les niveaux d'espèces réactives de l'oxygène (ROS). RéSULTATS: Il y eut une réduction marquée de la LTS relative chez les hommes obèses par rapport à ceux du groupe de poids normal. Nous avons également trouvé une corrélation négative significative entre la LTS relative et l'âge, l'IMC, le DFI, le pourcentage de spermatozoïdes avec chromatine immature et les niveaux intracellulaires de ROS chez les hommes obèses. Dans le groupe d'hommes de poids normal, la LTS relative n'était corrélée négativement qu'avec les taux de DFI et de ROS intracellulaires. En ce qui concerne l'expression de l'ARNm, il y avait une régulation positive considérable de Beclin1, ULK1 et BCL2 dans le groupe d'hommes obèses par rapport à ceux du  groupe de poids normal. L'obésité s'est également avérée être associée à une baisse considérable du volume de sperme, du nombre total de spermatozoïdes, de la mobilité progressive et de la viabilité des spermatozoïdes par rapport aux hommes de poids normal. En outre, l'obésité était associée à des pourcentages considérablement plus élevés de DFI, de spermatozoïdes avec chromatine immature, d'apoptose à un stade avancé, et de niveaux élevés de ROS. CONCLUSION: Selon nos résultats, l'obésité est associée au raccourcissement des télomères des spermatozoïdes et à une expression aberrante d'ARNm liés à l'autophagie. Il convient de souligner que le raccourcissement des télomères dans les spermatozoïdes peut être une conséquence indirecte de l'obésité en raison du stress oxydatif associé à la maladie. Néanmoins, des études plus approfondies sont nécessaires pour une compréhension plus complète.

14.
Int J Biol Macromol ; 225: 1038-1048, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36410538

RESUMO

Circular RNAs (circRNAs) are a novel class of non-coding RNAs. They are single-stranded RNA transcripts characterized with a closed loop structure making them resistant to degrading enzymes. Recently, circRNAs have been suggested with regulatory roles in gene expression involved in controlling various biological processes. Notably, they have demonstrated abundance, dynamic expression, back-splicing events, and spatiotemporally regulation in the human brain. Accordingly, they are expected to be involved in brain functions and related diseases. Studies in animals and human brain have revealed differential expression of circRNAs in brain compartments. Interestingly, contributing roles of circRNAs in the regulation of central nervous system (CNS) development have been demonstrated in a number of studies. It has been proposed that circRNAs play role in substantial neurological functions like neurotransmitter-associated tasks, neural cells maturation, and functions of synapses. Furthermore, 3 main pathways have been identified in association with circRNAs's host genes including axon guidance, Wnt signaling, and transforming growth factor beta (TGF-ß) signaling pathways, which are known to be involved in substantial functions like migration and differentiation of neurons and specification of axons, and thus play role in brain development. In this review, we have an overview to the biogenesis, biological functions of circRNAs, and particularly their roles in human brain development and the pathogenesis of neurodegenerative diseases including Alzheimer's diseases, multiple sclerosis, Parkinson's disease and brain tumors.


Assuntos
Doenças Neurodegenerativas , RNA Circular , Animais , Humanos , RNA Circular/genética , RNA Circular/metabolismo , RNA/metabolismo , Doenças Neurodegenerativas/genética , Splicing de RNA , Encéfalo/metabolismo
15.
Iran J Parasitol ; 17(4): 543-553, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36660414

RESUMO

Background: Leishmania is a eukaryotic protozoan parasite belonging to the Trypanosomatidae family. The Iranian Lizard Leishmania (I.L.L.), which is nonpathogenic to mammals, shows great promise to be used as an expression system for recombinant protein production. Unlike other Leishmania strains, the ideal culture medium for I.L.L. has not been established, although it is commonly cultured in the RPMI1640 medium. Methods: We investigated the growth rate of the wild and recombinant I.L.L. in BHI, RPMI1640, LB, and M199 media with and without FBS, hemin, or lyophilized rabbit serum. Subsequently, the expression rate of the recombinant protein in these media was compared. Results: The growth rate of I.L.L. in RPMI1640 medium and LB broth was similar and supplementation with 10% FBS did not affect the growth rate. The amount of protein expression in the LB medium was higher than in the other three media. Conclusion: The LB broth is an appropriate medium for I.L.L. culture and recombinant protein production.

16.
Int J Prev Med ; 13: 133, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452468

RESUMO

Background: These days, silver nanoparticles (Ag NPs) have been given considerable attention and applied in medical technology due to their great antimicrobial and antioxidant features. In the present study, we aimed to synthesize Ag NPs through the reduction of silver nitrate in the presence of Vitex agnus castus L fruit extract. Methods: After collecting fruits, their extract was prepared and added to Ag NO3 to produce Ag NPs. The effect of different parameters like AgNO3 concentration (0.5, 1, 3, and 5 mM), sunlight exposure, and sunlight irradiation time (10, 20, 30, and 40 min) was investigated in the synthesis of Ag NPs. The features of Ag NPs were characterized using UV-visible spectroscopy, scanning electron microscope (SEM), X-ray diffraction (XRD) analysis, and dynamic light scattering analysis. Moreover, antimicrobial function of Ag NPs was evaluated using Escherichia coli and Bacillus cereus bacteria species and minimal inhibitory concentration (MIC) of Ag NPs against these two pathogens was measured. Results: The results showed that the synthesized nanoparticles had a spherical shape and the range size of 30-60 nm. For the first time, the antimicrobial activity of synthesized Ag NPs of Vitex agnus castus L fruit extract was shown. Conclusions: It can be stated that the biosynthesis of Ag NPs using fruit extract of this plant is an environmentally friendly, economic and harmless method without any use of poisonous substances and no side effects. These Ag NPs can be considered as suitable antibacterial agents and replacements for antibiotics.

17.
Curr Pharm Biotechnol ; 23(4): 579-593, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34132181

RESUMO

The critical problems of conventional prostate cancer therapeutic strategies like nonspecific toxicity and multi-drug resistance prompted the development and application of countless nanoparticle- based siRNA therapeutics. Unfortunately, siRNA-based therapeutics suffer from the lack of safe and effective delivery systems, immune system stimulation, poor knowledge of nano-bio interactions, and limitations concerning designing, manufacturing, clinical translation, and commercialization. In this review, we provide cutting-edge advances in nanoparticle-mediated siRNA delivery carriers like polymeric systems, lipid systems, specific systems, and rigid nanoparticles for the treatment of prostate cancer. Moreover, co-delivery of conventional chemotherapy drugs with siRNA as a revolutionary robust strategy for prostate cancer combinational therapy is completely covered.


Assuntos
Nanopartículas , Neoplasias , Neoplasias da Próstata , Sistemas de Liberação de Medicamentos , Humanos , Lipídeos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , RNA Interferente Pequeno/genética
18.
J Lasers Med Sci ; 13: e38, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36743151

RESUMO

Weakened wound healing is a popular, severe complication of patients with diabetes which poses a risk for foot infection and amputation. Researchers have searched for new treatments for treating diabetic foot ulcers (DFUs) in recent years. In this case report, for the first time, we applied photobiomodulation therapy (PBMT) and Altrazeal powder together to treat a severe case of DFU in a 47-year-old woman who was suffering from type 1 diabetes. Along with the progress of combination therapy, we observed that the ulcer area was significantly reduced, and the wound healed within 16 weeks. Furthermore, dermatitis and purulent secretion were treated, and the pain was reduced. This reported case study indicated the beneficial effect of the combination of PBMT and Altrazeal powder for the healing of a severe DFU in a patient with type one diabetes. The combined application of PBMT plus Altrazeal powder demonstrated an additive effect. Further clinical trials in the clinical setting are suggested to validate the results further. Besides, more studies in preclinical models are suggested to find the mechanism of the action of combination therapy.

19.
Biomed Pharmacother ; 148: 112743, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35228065

RESUMO

Viral infections are a common cause of morbidity worldwide. The emergence of Coronavirus Disease 2019 (COVID-19) has led to more attention to viral infections and finding novel therapeutics. The CRISPR-Cas9 system has been recently proposed as a potential therapeutic tool for the treatment of viral diseases. Here, we review the research progress in the use of CRISPR-Cas technology for treating viral infections, as well as the strategies for improving the delivery of this gene-editing tool in vivo. Key challenges that hinder the widespread clinical application of CRISPR-Cas9 technology are also discussed, and several possible directions for future research are proposed.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Terapia Genética/métodos , Viroses/terapia , COVID-19/terapia , Genoma Viral , Infecções por HIV/terapia , Hepatite B/terapia , Infecções por Herpesviridae/terapia , Humanos , Infecções por Papillomavirus/terapia , SARS-CoV-2
20.
Biomed Pharmacother ; 145: 112265, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34749054

RESUMO

Advances in high-throughput sequencing over the past decades have led to the identification of thousands of non-coding RNAs (ncRNAs), which play a major role in regulating gene expression. One emerging class of ncRNAs is the natural antisense transcripts (NATs), the RNA molecules transcribed from the opposite strand of a protein-coding gene locus. NATs are known to concordantly and discordantly regulate gene expression in both cis and trans manners at the transcriptional, post-transcriptional, translational, and epigenetic levels. Aberrant expression of NATs can therefore cause dysregulation in many biological pathways and has been observed in many genetic diseases. This review outlines the involvements and mechanisms of NATs in the pathogenesis of various diseases, with a special emphasis on neurodegenerative diseases and cancer. We also summarize recent findings on NAT knockdown and/or overexpression experiments and discuss the potential of NATs as promising targets for future gene therapies.


Assuntos
Neoplasias/genética , Doenças Neurodegenerativas/genética , RNA não Traduzido/genética , Animais , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias/patologia , Doenças Neurodegenerativas/fisiopatologia , RNA Antissenso/genética , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA