RESUMO
γ-secretase processing of amyloid precursor protein (APP) has long been of interest in the pathological progression of Alzheimer's disease (AD) due to its role in the generation of amyloid-ß. The catalytic component of the enzyme is the presenilins of which there are two homologues, Presenilin-1 (PS1) and Presenilin-2 (PS2). The field has focussed on the PS1 form of this enzyme, as it is typically considered the more active at APP processing. However, much of this work has been completed without appropriate consideration of the specific levels of protein expression of PS1 and PS2. We propose that expression is an important factor in PS1- and PS2-γ-secretase activity, and that when this is considered, PS1 does not have greater activity than PS2. We developed and validated tools for quantitative assessment of PS1 and PS2 protein expression levels to enable the direct comparison of PS in exogenous and endogenous expression systems, in HEK-293 PS1 and/or PS2 knockout cells. We show that exogenous expression of Myc-PS1-NTF is 5.5-times higher than Myc-PS2-NTF. Quantitating endogenous PS protein levels, using a novel PS1/2 fusion standard we developed, showed similar results. When the marked difference in PS1 and PS2 protein levels is considered, we show that compared to PS1-γ-secretase, PS2-γ-secretase has equal or more activity on APP and Notch1. This study has implications for understanding the PS1- and PS2-specific contributions to substrate processing, and their potential influence in AD pathogenesis.
Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Presenilina-2 , Humanos , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Endopeptidases/metabolismo , Células HEK293 , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilina-2/genética , Presenilina-2/metabolismoRESUMO
Intellectual disability (ID) is a common neurodevelopmental disorder characterized by significantly impaired adaptive behavior and cognitive capacity. High throughput sequencing approaches have revealed the genetic etiologies for 25-50% of ID patients, while inherited genetic mutations were detected in <5% cases. Here, we investigated the genetic cause for non-syndromic ID in a Han Chinese family. Whole genome sequencing was performed on identical twin sisters diagnosed with ID, their respective children, and their asymptomatic parents. Data was filtered for rare variants, and in silico prediction tools were used to establish pathogenic alleles. Candidate mutations were validated by Sanger sequencing. In silico modeling was used to evaluate the mutation's effects on the protein encoded by a candidate coding gene. A novel heterozygous variant in the ZBTB18 gene c.1323C>G (p.His441Gln) was identified. This variant co-segregated with affected individuals in an autosomal dominant pattern and was not detected in asymptomatic family members. Molecular studies reveal that a p.His441Gln substitution disrupts zinc binding within the second zinc finger and disrupts the capacity for ZBTB18 to bind DNA. This is the first report of an inherited ZBTB18 mutation for ID. This study further validates WGS for the accurate molecular diagnosis of ID.
Assuntos
Deficiência Intelectual , Mutação de Sentido Incorreto , Criança , Humanos , Família , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Mutação , Linhagem , Proteínas/genéticaRESUMO
Mutations to genes that encode DNA-binding transcription factors (TFs) underlie a broad spectrum of human neurodevelopmental disorders. Here, we highlight the pathological mechanisms arising from mutations to TF genes that influence the development of mammalian cerebral cortex neurons. Drawing on recent findings for TF genes including ZBTB18, we discuss how functional missense mutations to such genes confer non-native gene regulatory actions in developing neurons, leading to cell-morphological defects, neuroanatomical abnormalities during foetal brain development and functional impairment. Further, we discuss how missense variation to human TF genes documented in the general population endow quantifiable changes to transcriptional regulation, with potential cell biological effects on the temporal progression of cerebral cortex neuron development and homeostasis. We offer a systematic approach to investigate the functional impact of missense variation in brain TFs and define their direct molecular and cellular actions in foetal neurodevelopment, tissue homeostasis and disease states.
Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Animais , Humanos , Mamíferos/metabolismo , Mutação , Mutação de Sentido Incorreto/genética , Neurônios/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
A case of a missense RBM10 variant in an adult with mild to moderate intellectual disability.
Assuntos
Deficiência Intelectual , Mutação de Sentido Incorreto , Adulto , Humanos , Mutação de Sentido Incorreto/genética , Fenótipo , Proteínas de Ligação a RNA/genéticaRESUMO
Re(I) complexes have potential in biomedical sciences as imaging agents, diagnostics and therapeutics. Thus, it is crucial to understand how Re(I) complexes interact with carrier proteins, like serum albumins. Here, two neutral Re(I) complexes were used (fac-[Re(CO)3 (1,10-phenanthroline)L], in which L is either 4-cyanophenyltetrazolate (1) or 4-methoxycarbonylphenyltetrazole ester (2), to study the interactions with bovine serum albumin (BSA). Spectroscopic measurements, calculations of thermodynamic and Förster resonance energy transfer parameters, as well as molecular modelling, were performed to study differential binding between BSA and complex 1 and 2. Induced-fit docking combined with quantum-polarised ligand docking were employed in what is believed to be a first for a Re(I) complex as a ligand for BSA. Our findings provide a basis for other molecular interaction studies and suggest that subtle functional group alterations at the terminal region of the Re(I) complex have a significant impact on the ability of this class of compounds to interact with BSA.
Assuntos
Soroalbumina Bovina , Sítios de Ligação , Simulação de Acoplamento Molecular , Ligação Proteica , Soroalbumina Bovina/metabolismo , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , TermodinâmicaRESUMO
Obesity is one of the most prevalent metabolic diseases in the Western world and correlates directly with glucose intolerance and insulin resistance, often culminating in Type 2 Diabetes (T2D). Importantly, our team has recently shown that the TNF superfamily (TNFSF) member protein, TNFSF14, has been reported to protect against high fat diet induced obesity and pre-diabetes. We hypothesized that mimics of TNFSF14 may therefore be valuable as anti-diabetic agents. In this study, we use in silico approaches to identify key regions of TNFSF14 responsible for binding to the Herpes virus entry mediator and Lymphotoxin ß receptor. In vitro evaluation of a selection of optimised peptides identified six potentially therapeutic TNFSF14 peptides. We report that these peptides increased insulin and fatty acid oxidation signalling in skeletal muscle cells. We then selected one of these promising peptides to determine the efficacy to promote metabolic benefits in vivo. Importantly, the TNFSF14 peptide 7 reduced high fat diet-induced glucose intolerance, insulin resistance and hyperinsulinemia in a mouse model of obesity. In addition, we highlight that the TNFSF14 peptide 7 resulted in a marked reduction in liver steatosis and a concomitant increase in phospho-AMPK signalling. We conclude that TNFSF14-derived molecules positively regulate glucose homeostasis and lipid metabolism and may therefore open a completely novel therapeutic pathway for treating obesity and T2D.
Assuntos
Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Obesidade/complicações , Obesidade/tratamento farmacológico , Peptídeos/administração & dosagem , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/administração & dosagem , Animais , Sítios de Ligação , Glicemia/metabolismo , Simulação por Computador , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Intolerância à Glucose/tratamento farmacológico , Intolerância à Glucose/metabolismo , Homeostase/efeitos dos fármacos , Hiperinsulinismo/tratamento farmacológico , Hiperinsulinismo/metabolismo , Hipoglicemiantes/síntese química , Resistência à Insulina , Receptor beta de Linfotoxina/química , Receptor beta de Linfotoxina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Peptídeos/síntese química , Membro 14 de Receptores do Fator de Necrose Tumoral/química , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/química , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismoRESUMO
γ-Secretase is an intramembrane aspartyl protease that is important in regulating normal cell physiology via cleavage of over 100 transmembrane proteins, including Amyloid Precursor Protein (APP) and Notch family receptors. However, aberrant proteolysis of substrates has implications in the progression of disease pathologies, including Alzheimer's disease (AD), cancers, and skin disorders. While several γ-secretase inhibitors have been identified, there has been toxicity observed in clinical trials associated with non-selective enzyme inhibition. To address this, γ-secretase modulators have been identified and pursued as more selective agents. Recent structural evidence has provided an insight into how γ-secretase inhibitors and modulators are recognized by γ-secretase, providing a platform for rational drug design targeting this protease. In this study, docking- and pharmacophore-based screening approaches were evaluated for their ability to identify, from libraries of known inhibitors and modulators with decoys with similar physicochemical properties, γ-secretase inhibitors and modulators. Using these libraries, we defined strategies for identifying both γ-secretase inhibitors and modulators incorporating an initial pharmacophore-based screen followed by a docking-based screen, with each strategy employing distinct γ-secretase structures. Furthermore, known γ-secretase inhibitors and modulators were able to be identified from an external set of bioactive molecules following application of the derived screening strategies. The approaches described herein will inform the discovery of novel small molecules targeting γ-secretase.
Assuntos
Secretases da Proteína Precursora do Amiloide/química , Descoberta de Drogas/métodos , Inibidores e Moduladores de Secretases gama/química , Modelos Moleculares , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Inibidores e Moduladores de Secretases gama/farmacologia , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Reprodutibilidade dos Testes , Relação Estrutura-AtividadeRESUMO
Genetic variation of the multi-zinc finger BTB domain transcription factor ZBTB18 can cause a spectrum of human neurodevelopmental disorders, but the underlying mechanisms are not well understood. Recently, we reported that pathogenic, de novo ZBTB18 missense mutations alter its DNA-binding specificity and gene regulatory functions, leading to human neurodevelopmental disease. However, the functional impact of the general population ZBTB18 missense variants is unknown. Here, we investigated such variants documented in the Genome Aggregation Database (gnomAD) to discover that ZBTB gene family members are intolerant to loss-of-function and missense mutations, but not synonymous mutations. We studied ZBTB18 as a protein-DNA complex to find that general population missense variants are rare, and disproportionately map to non-DNA-contact residues, in contrast to the majority of disease-associated variants that map to DNA-contact residues, essential to motif binding. We studied a selection of variants (n = 12), which spans the multi-zinc finger region to find 58.3% (7/12) of variants displayed altered DNA binding, 41.6% (5/12) exhibited altered transcriptional activity in a luciferase reporter assay, 33.3% (4/12) exhibited altered DNA binding and transcriptional activity, whereas 33.3% (4/12) displayed a negligible functional impact. Our results demonstrate that general population variants, while rare, can influence ZBTB18 function, with potential consequences for neurodevelopment, homeostasis, and disease.
Assuntos
Proteínas de Ligação a DNA/genética , Mutação de Sentido Incorreto , Proteínas Repressoras/genética , Regulação da Expressão Gênica , Frequência do Gene , Genética Populacional , Células HEK293 , Humanos , Estrutura Terciária de Proteína , Dedos de ZincoRESUMO
The Wnt signalling pathways are of great importance in embryonic development and oncogenesis. Canonical and non-canonical Wnt signalling pathways are known, with the canonical (or ß-catenin dependent) pathway being perhaps the best studied of these. While structural knowledge of proteins and interactions involved in canonical Wnt signalling has accumulated over the past 20 years, the pace of discovery has increased in recent years, with the structures of several key proteins and assemblies in the pathway being released. In this review, we provide a brief overview of canonical Wnt signalling, followed by a comprehensive overview of currently available X-ray, NMR and cryoEM data elaborating the structures of proteins and interactions involved in canonical Wnt signalling. While the volume of structures available is considerable, numerous gaps in knowledge remain, particularly a comprehensive understanding of the assembly of large multiprotein complexes mediating key aspects of pathway, as well as understanding the structure and activation of membrane receptors in the pathway. Nonetheless, the presently available data affords considerable opportunities for structure-based drug design efforts targeting canonical Wnt signalling.
Assuntos
Via de Sinalização Wnt , Animais , Núcleo Celular/metabolismo , Desenho de Fármacos , Humanos , Conformação Proteica , Receptores de Superfície Celular/metabolismo , Proteínas Wnt/química , Proteínas Wnt/metabolismoRESUMO
The Class F G protein-coupled receptors (GPCRs) include Smoothened and the ten Frizzled receptors, which are major cell membrane receptors in the Hedgehog and Wnt signalling pathways respectively and of enormous interest in embryonic development and as therapeutic targets in cancer. Recent crystal structures of Smoothened provide the opportunity to investigate the structural biology of Class F GPCRs in more detail, in turn, informing the development of therapeutics. A key question in this area is how one receptor may trigger distinct pathways - particularly relevant for Wnt signalling, in which signals may be transduced from a Frizzled via Dishevelled or G proteins, depending on the context. In this study, we employ adiabatic biased molecular dynamics and umbrella sampling to investigate the activation of Smoothened and Frizzled-7 in both the native state and bound to endogenous ligands, as well as how the clinically used Smoothened antagonist vismodegib alters this signalling. The results highlight key energetic barriers in the activation of these receptors, and the molecular features of the receptors mediating these barriers, demonstrating our approach as a robust means of investigating signalling through these receptors.
Assuntos
Receptores Acoplados a Proteínas GRESUMO
The activities of DNA-binding transcription factors, such as the multi-zinc-finger protein ZBTB18 (also known as RP58, or ZNF238), are essential to coordinate mammalian neurodevelopment, including the birth and radial migration of newborn neurons within the fetal brain. In humans, the majority of disease-associated missense mutations in ZBTB18 lie within the DNA-binding zinc-finger domain and are associated with brain developmental disorder, yet the molecular mechanisms explaining their role in disease remain unclear. To address this, we developed in silico models of ZBTB18, bound to DNA, and discovered that half of the missense variants map to residues (Asn461, Arg464, Glu486) predicted to be essential to sequence-specific DNA contact, whereas others map to residues (Leu434, Tyr447, Arg495) with limited contributions to DNA binding. We studied pathogenic variants to residues with close (N461S) and limited (R495G) DNA contact and found that each bound DNA promiscuously, displayed altered transcriptional regulatory activity in vitro, and influenced the radial migration of newborn neurons in vivo in different ways. Taken together, our results suggest that altered transcriptional regulation could represent an important pathological mechanism for ZBTB18 missense variants in brain developmental disease.
Assuntos
Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Mutação de Sentido Incorreto , Neurônios/metabolismo , Proteínas Repressoras/genética , Dedos de Zinco/genética , Animais , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Repressoras/química , Relação Estrutura-AtividadeRESUMO
Several proteins other than the frizzled receptors (Fzd) and the secreted Frizzled-related proteins (sFRP) contain Fzd-type cysteine-rich domains (CRD). We have termed these domains "putative Fzd-type CRDs", as the relevance of Wnt signalling in the majority of these is unknown; the RORs, an exception to this, are well known for mediating non-canonical Wnt signalling. In this study, we have predicted the likely binding affinity of all Wnts for all putative Fzd-type CRDs. We applied both our previously determined WntâFzd CRD binding affinity prediction model, as well as a newly devised model wherein the lipid term was forced to contribute favourably to the predicted binding energy. The results obtained from our new model indicate that certain putative Fzd CRDs are much more likely to bind Wnts, in some cases exhibiting selectivity for specific Wnts. The results of this study inform the investigation of Wnt signalling modulation beyond Fzds and sFRPs.
Assuntos
Cisteína , Receptores Frizzled/química , Receptores Frizzled/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Wnt/metabolismo , Cisteína/química , Humanos , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Transdução de SinaisRESUMO
Wnt signaling pathways are of significant interest in development and oncogenesis. The first step in these pathways typically involves the binding of a Wnt protein to the cysteine-rich domain (CRD) of a Frizzled receptor. Wnt-Frizzled interactions can be antagonized by secreted Frizzled-related proteins (SFRPs), which also contain a Frizzled-like CRD. The large number of Wnts, Frizzleds, and SFRPs, as well as the hydrophobic nature of Wnt, poses challenges to laboratory-based investigations of interactions involving Wnt. Here, utilizing structural knowledge of a representative Wnt-Frizzled CRD interaction, as well as experimentally determined binding affinities for a selection of Wnt-Frizzled CRD interactions, we generated homology models of Wnt-Frizzled CRD interactions and developed a quantitative structure-activity relationship for predicting their binding affinities. The derived model incorporates a small selection of terms derived from scoring functions used in protein-protein docking, as well as an energetic term considering the contribution made by the lipid of Wnt to the Wnt-Frizzled binding affinity. Validation with an external test set suggests that the model can accurately predict binding affinity for 75% of cases and that the error associated with the predictions is comparable with the experimental error. The model was applied to predict the binding affinities of the full range of mouse and human Wnt-Frizzled and Wnt-SFRP interactions, indicating trends in Wnt binding affinity for Frizzled and SFRP CRDs. The comprehensive predictions made in this study provide the basis for laboratory-based studies of previously unexplored Wnt-Frizzled and Wnt-SFRP interactions, which, in turn, may reveal further Wnt signaling pathways.
Assuntos
Receptores Frizzled , Simulação de Acoplamento Molecular , Proteínas Wnt , Via de Sinalização Wnt/fisiologia , Animais , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Humanos , Ligação Proteica , Domínios Proteicos , Proteínas Wnt/química , Proteínas Wnt/genética , Proteínas Wnt/metabolismoRESUMO
The antibody crystallizable fragment (Fc) is recognized by effector proteins as part of the immune system. Pathogens produce proteins that bind Fc in order to subvert or evade the immune response. The structural characterization of the determinants of Fc-protein association is essential to improve our understanding of the immune system at the molecular level and to develop new therapeutic agents. Furthermore, Fc-binding peptides and proteins are frequently used to purify therapeutic antibodies. Although several structures of Fc-protein complexes are available, numerous others have not yet been determined. Protein-protein docking could be used to investigate Fc-protein complexes; however, improved approaches are necessary to efficiently model such cases. In this study, a docking-based structural bioinformatics approach is developed for predicting the structures of Fc-protein complexes. Based on the available set of X-ray structures of Fc-protein complexes, three regions of the Fc, loosely corresponding to three turns within the structure, were defined as containing the essential features for protein recognition and used as restraints to filter the initial docking search. Rescoring the filtered poses with an optimal scoring strategy provided a success rate of approximately 80% of the test cases examined within the top ranked 20 poses, compared to approximately 20% by the initial unrestrained docking. The developed docking protocol provides a significant improvement over the initial unrestrained docking and will be valuable for predicting the structures of currently undetermined Fc-protein complexes, as well as in the design of peptides and proteins that target Fc.
Assuntos
Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/metabolismo , Simulação de Acoplamento Molecular/métodos , Sítios de Ligação , Biologia Computacional/métodos , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Conformação ProteicaRESUMO
Euonymus europaeus lectin (EEL) is a carbohydrate-binding protein derived from the fruit of the European spindle tree. EEL was first identified for its erythrocyte agglutinating properties and specificity for B and H blood groups. However, a detailed molecular picture of the structural basis of carbohydrate recognition by EEL remains to be developed. In this study, we performed fluorescence titrations of a range of carbohydrates against EEL. Binding of EEL to a wide range of carbohydrates was observed, including a series of blood group-related carbohydrates, mannosides, chitotriose and sialic acid. Affinity was strongest for carbohydrates with H-related structures and the B trisaccharide. A homology model of EEL was produced from templates identified using the HHPred server, which employs hidden Markov models (HMMs) to identify templates. The HMM approach identified that the best templates for EEL were proteins featuring a ricin B-like (R-type) fold. Separate templates were used to model the core and binding site regions of the lectin. Through the use of constrained docking and spatial comparison with a template ligand, binding modes for the carbohydrate ligands were predicted. A relationship between the experimental binding energies and the computed binding energies of the selected docked poses was determined and optimized. Collectively, our results suggest that EEL utilizes a single site for recognition of carbohydrates terminating in a variety of monosaccharides.
Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Antígenos de Grupos Sanguíneos/química , Euonymus/química , Lectinas de Plantas/química , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Sítios de Ligação , Configuração de Carboidratos , Sequência de Carboidratos , Cinética , Ligantes , Manosídeos/química , Cadeias de Markov , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Lectinas de Plantas/isolamento & purificação , Ligação Proteica , Dobramento de Proteína , Ricina/química , Ácidos Siálicos/química , Espectrometria de Fluorescência , Homologia Estrutural de Proteína , Termodinâmica , Trissacarídeos/químicaRESUMO
Glycosaminoglycans (GAGs) are complex polysaccharides involved in a wide range of biological signaling events, as well as being important as biological structural materials. Despite the ubiquity and importance of GAG-protein interactions in biological systems and potentially as therapeutic targets, detailed structures of such interactions are sparse in availability. Computational methods can provide detailed structural knowledge of these interactions; however, they should be evaluated against suitable test systems prior to their widespread use. In this study, we have investigated the application of automated molecular docking and interaction mapping techniques to characterizing GAG-protein interactions. A series of high-resolution X-ray crystal structures of GAGs in complex with proteins was used to evaluate the approaches. Accurately scoring the pose fitting best with the crystal structure was a challenge for all docking programs evaluated. The site mapping technique offered excellent prediction of the key residues involved in ligand recognition, comparable to the best pose and improved over the top-ranked pose. A design protocol incorporating site- and ligand-based mapping techniques was developed and applied to identify GAGs capable of binding to acidic fibroblast growth factor (aFGF). The protocol was able to identify ligands known to bind to aFGF and accurately able to predict the binding modes of those ligands when using a known ligand-binding conformation of the protein. This study demonstrates the value of mapping-based techniques in identifying specific GAG epitopes recognized by proteins and for GAG-based drug design.
Assuntos
Glicosaminoglicanos/química , Simulação de Acoplamento Molecular/métodos , Sequência de Aminoácidos , Sítios de Ligação , Sequência de Carboidratos , Fator 1 de Crescimento de Fibroblastos/química , Fator 1 de Crescimento de Fibroblastos/metabolismo , Glicosaminoglicanos/metabolismo , Dados de Sequência Molecular , Ligação ProteicaRESUMO
We have described the presence of cell-membrane-associated κFLCs (free immunoglobulin light chains) on the surface of myeloma cells. Notably, the anti-κFLC mAb (monoclonal antibody) MDX-1097 is being assessed in clinical trials as a therapy for κ light chain isotype multiple myeloma. Despite the clinical potential of anti-FLC mAbs, there have been limited studies on characterizing membrane-associated FLCs at a molecular level. Furthermore, it is not known whether λFLCs can associate with cell membranes of myeloma cells. In the present paper, we describe the presence of λFLCs on the surface of myeloma cells. We found that cell-surface-associated λFLCs are bound directly to the membrane and in an aggregated form. Subsequently, membrane interaction studies revealed that λFLCs interact with saturated zwitterionic lipids such as phosphatidylcholine and phosphatidylethanolamine, and using automated docking, we characterize a potential recognition site for these lipids. Atomic force microscopy confirmed that membrane-associated λFLCs are aggregated. Given the present findings, we propose a model whereby individual FLCs show modest affinity for zwitterionic lipids, with aggregation stabilizing the interaction due to multivalency. Notably, this is the first study to image FLCs bound to phospholipids and provides important insights into the possible mechanisms of membrane association by this unique myeloma surface antigen.
Assuntos
Membrana Celular/metabolismo , Cadeias Leves de Imunoglobulina/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Humanos , Cadeias Leves de Imunoglobulina/química , Microscopia de Força Atômica , Simulação de Acoplamento Molecular , Mieloma Múltiplo , Fosfatidilcolinas/metabolismo , Ligação ProteicaRESUMO
The exon junction complex (EJC), nucleated by EIF4A3, is indispensable for mRNA fate and function throughout eukaryotes. We discover that EIF4A3 directly controls microtubules, independent of RNA, which is critical for neural wiring. While neuronal survival in the developing mouse cerebral cortex depends upon an intact EJC, axonal tract development requires only Eif4a3. Using human cortical organoids, we show that EIF4A3 disease mutations also impair neuronal growth, highlighting conserved functions relevant for neurodevelopmental pathology. Live imaging of growing neurons shows that EIF4A3 is essential for microtubule dynamics. Employing biochemistry and competition experiments, we demonstrate that EIF4A3 directly binds to microtubules, mutually exclusive of the EJC. Finally, in vitro reconstitution assays and rescue experiments demonstrate that EIF4A3 is sufficient to promote microtubule polymerization and that EIF4A3-microtubule association is a major contributor to axon growth. This reveals a fundamental mechanism by which neurons re-utilize core gene expression machinery to directly control the cytoskeleton.
Assuntos
Axônios , Citoesqueleto , Fator de Iniciação 4A em Eucariotos , Microtúbulos , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Animais , Humanos , Microtúbulos/metabolismo , Axônios/metabolismo , Camundongos , Citoesqueleto/metabolismo , Neurônios/metabolismo , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , RNA Helicases DEAD-boxRESUMO
OBJECTIVE: The aim was to determine the potential association between palate shape and unilateral hypoglossal nerve stimulation (HNS) outcomes. METHODS: Preoperative drug-induced sleep endoscopy (DISE) videos were reviewed and scored by 3 blinded reviewers to determine airway narrowing at the hard-soft palate junction (HP), soft palate genu, and inferior velum, as described by Woodson (2014). Scoring was as follows: 1-open airway, 2-narrow, 3-severe narrowing. Overall palate shape (oblique, intermediate, or vertical) was determined based on prior criteria. Successful surgical treatment was defined by the HNS titration polysomnogram as a reduction of ≥50% in the apnea-hypopnea index (AHI) to <15 events/h. RESULTS: Of 332 adults, the majority was male (77%) with an average BMI of 29.2 ± 3.6 kg/m2 . Overall success rate was 73%. Success rate was lower in patients with vertical palate shape compared with the other shapes (56% vs. 75%, p = 0.029). HP score 3 compared with scores 2 and 1 was associated with lower success rates (60% vs. 76%, p = 0.028), but genu and velum scores were not associated with outcomes. Patients with both HP score 3 and complete oropharyngeal lateral wall-related obstruction had notably worse outcomes (22% vs. 74%, p = 0.026). HP score 3 (OR 0.45, 95%CI 0.22-0.92) and vertical palate shape (OR 0.33, 95%CI 0.15-0.78) were independently associated with lower odds of surgical response after adjustment for DISE findings, age, gender, and BMI. CONCLUSION: Vertical palate shape and narrowing at the hard-soft palate junction are independently associated with lower HNS surgical success rates. LEVEL OF EVIDENCE: 3 Laryngoscope, 134:981-986, 2024.
Assuntos
Apneia Obstrutiva do Sono , Adulto , Humanos , Masculino , Apneia Obstrutiva do Sono/cirurgia , Apneia Obstrutiva do Sono/complicações , Nervo Hipoglosso , Palato Mole/cirurgia , Orofaringe , Endoscopia , Palato DuroRESUMO
OBJECTIVE: Pharyngeal surgery is a treatment option for patients with obstructive sleep apnea (OSA) unable to tolerate positive pressure therapy. This study aims to determine the association between palate shape as described by Woodson and pharyngeal surgical outcomes. STUDY DESIGN: Exploratory analysis of retrospective cohort. SETTING: Multicenter. METHODS: Three blinded reviewers assessed palate shape using drug-induced sleep endoscopy (DISE) videos from a previously-assembled cohort of adults undergoing pharyngeal surgery. Palate shape scores were examined for association with surgical outcomes with univariate and multivariate analyses. Multivariate analyses included adjustment for consensus DISE findings determined previously. RESULTS: Two hundred nine study subjects were included from 13 centers. Age was 53.7 ± 11.5 years, body mass index (BMI) was 30.3 ± 5.0 kg/m2, and 21% were female. In isolated soft palate surgery, greater GenuAP narrowing was associated with lesser odds of surgical response, whereas greater GenuLW narrowing was associated with greater odds of surgical response. These findings largely persisted after adjustment for key DISE findings, age, gender, OSA severity, BMI, and tonsil size. Other palate-shape findings were not clearly associated with surgical outcomes, although some palate-shape findings demonstrated trends toward an association with outcomes (P < .10). CONCLUSION: Greater GenuAP narrowing and GenuLW narrowing were associated with lesser and greater, respectively, odds of surgical response after isolated soft palate surgery. Palate shape and other palate shape level scores were not clearly associated with surgical outcomes. Larger studies may determine more precisely the association between palate shape and pharyngeal surgery outcomes.