Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
2.
Int J Mol Sci ; 24(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36902005

RESUMO

T lymphocytes are key players in adaptive immune responses through the recognition of peptide antigens through the T Cell Receptor (TCR). After TCR engagement, a signaling cascade is activated, leading to T cell activation, proliferation, and differentiation into effector cells. Delicate control of activation signals coupled to the TCR is needed to avoid uncontrolled immune responses involving T cells. It has been previously shown that mice deficient in the expression of the adaptor NTAL (Non-T cell activation linker), a molecule structurally and evolutionarily related to the transmembrane adaptor LAT (Linker for the Activation of T cells), develop an autoimmune syndrome characterized by the presence of autoantibodies and enlarged spleens. In the present work we intended to deepen investigation into the negative regulatory functions of the NTAL adaptor in T cells and its potential relationship with autoimmune disorders. For this purpose, in this work we used Jurkat cells as a T cell model, and we lentivirally transfected them to express the NTAL adaptor in order to analyze the effect on intracellular signals associated with the TCR. In addition, we analyzed the expression of NTAL in primary CD4+ T cells from healthy donors and Rheumatoid Arthritis (RA) patients. Our results showed that NTAL expression in Jurkat cells decreased calcium fluxes and PLC-γ1 activation upon stimulation through the TCR complex. Moreover, we showed that NTAL was also expressed in activated human CD4+ T cells, and that the increase of its expression was reduced in CD4+ T cells from RA patients. Our results, together with previous reports, suggest a relevant role for the NTAL adaptor as a negative regulator of early intracellular TCR signaling, with a potential implication in RA.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Artrite Reumatoide , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Jurkat , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Receptores de Antígenos de Linfócitos T/metabolismo
3.
Nat Immunol ; 9(5): 522-32, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18408722

RESUMO

Antigen recognition by T cell antigen receptors (TCRs) is thought to 'unmask' a proline-rich sequence (PRS) present in the CD3epsilon cytosolic segment, which allows it to trigger T cell activation. Using 'knock-in' mice with deletion of the PRS, we demonstrate here that elimination of the CD3epsilon PRS had no effect on mature T cell responsiveness. In contrast, in preselection CD4+CD8+ thymocytes, the CD3epsilon PRS acted together with the adaptor protein SLAP to promote CD3zeta degradation, thereby contributing to downregulation of TCR expression on the cell surface. In addition, analysis of CD4+CD8+ thymocytes of TCR-transgenic mice showed that the CD3epsilon PRS enhanced TCR sensitivity to weak ligands. Our results identify previously unknown functions for the evolutionarily conserved CD3epsilon PRS at the CD4+CD8+ developmental stage and suggest a rather limited function in mature T cells.


Assuntos
Complexo CD3/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Composição de Bases , Complexo CD3/imunologia , Complexo CD3/metabolismo , Antígenos CD4/análise , Antígenos CD8/análise , Diferenciação Celular , Deleção de Genes , Regulação da Expressão Gênica , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Prolina , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Linfócitos T/citologia , Timo/imunologia
4.
Int Orthop ; 43(8): 1873-1882, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30141139

RESUMO

PURPOSE: To study the exact distribution of bone cement around augmented fenestrated pedicle screws in both lumbar and sacral vertebrae of patients with low bone quality. METHODS: A total of 37 patients with instrumented lumbar fusion were investigated. 3D computed tomography virtual models of the injected cement and screws were obtained. The models were computed for their centroid (i.e. their average mass centre point), and their coordinates (x, y, z) were projected on their respective screw-transversal and screw-longitudinal planes for further analysis. RESULTS: The results showed better bone cement homogeneous distribution around the screws in lumbar (L4 and L5) than in sacral (S1) vertebrae. In the lumbar region, the centroids were transversally projected near the transversal centre of symmetry of the screws. On the other hand, in the sacral region, the cement flowed preferentially outside the centre of symmetry of the screws, into the sacral ala. CONCLUSIONS: The results confirm the different flow behaviours of bone cement in lumbar versus sacra vertebrae. The computer methodology followed in this study helps to understand the clinical monitoring observations and lays the foundations for better positioning of the screws and specific vertebrae-oriented screw designs.


Assuntos
Cimentos Ósseos/farmacologia , Osteoporose/cirurgia , Parafusos Pediculares , Doenças da Coluna Vertebral/cirurgia , Fusão Vertebral/instrumentação , Idoso , Idoso de 80 Anos ou mais , Cimentos Ósseos/uso terapêutico , Cimentação , Simulação por Computador , Feminino , Humanos , Imageamento Tridimensional , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada Multidetectores , Osteoporose/diagnóstico por imagem , Sacro/diagnóstico por imagem , Sacro/cirurgia , Doenças da Coluna Vertebral/diagnóstico por imagem , Fusão Vertebral/métodos
5.
Immunity ; 31(2): 197-208, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19682930

RESUMO

Despite compromised T cell antigen receptor (TCR) signaling, mice in which tyrosine 136 of the adaptor linker for activation of T cells (LAT) was constitutively mutated (Lat(Y136F) mice) accumulate CD4(+) T cells that trigger autoimmunity and inflammation. Here we show that equipping postthymic CD4(+) T cells with LATY136F molecules or rendering them deficient in LAT molecules triggers a lymphoproliferative disorder dependent on prior TCR engagement. Therefore, such disorders required neither faulty thymic T cell maturation nor LATY136F molecules. Unexpectedly, in CD4(+) T cells recently deprived of LAT, the proximal triggering module of the TCR induced a spectrum of protein tyrosine phosphorylation that largely overlapped the one observed in the presence of LAT. The fact that such LAT-independent signals result in lymphoproliferative disorders with excessive cytokine production demonstrates that LAT constitutes a key negative regulator of the triggering module and of the LAT-independent branches of the TCR signaling cassette.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Antígenos CD28/imunologia , Linfócitos T CD4-Positivos/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Transtornos Linfoproliferativos/imunologia , Proteínas de Membrana/imunologia , Fosfoproteínas/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Transferência Adotiva , Animais , Antígenos CD28/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Transtornos Linfoproliferativos/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Mutação , Fosfoproteínas/genética , Fosforilação/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/imunologia
6.
J Mol Cell Cardiol ; 105: 12-23, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28223221

RESUMO

Endothelial progenitor cells (EPCs) constitute a promising alternative in cardiovascular regenerative medicine due to their assigned role in angiogenesis and vascular repair. In response to injury, EPCs promote vascular remodeling by replacement of damaged endothelial cells and/or by secreting angiogenic factors over the damaged tissue. Nevertheless, such mechanisms need to be further characterized. In the current approach we have evaluated the initial response of early EPCs (eEPCs) from healthy individuals after direct contact with the factors released by carotid arteries complicated with atherosclerotic plaques (AP), in order to understand the mechanisms underlying the neovascularization and remodeling properties assigned to these cells. Herein, we found that the AP secretome stimulated eEPCs proliferation and mobilization ex vivo, and such increase was accompanied by augmented permeability, cell contraction and also an increase of cell-cell adhesion in association with raised vinculin levels. Furthermore, a comparative mass spectrometry analysis of control versus stimulated eEPCs revealed a differential expression of proteins in the AP treated cells, mostly involved in cell migration, proliferation and vascular remodeling. Some of these protein changes were also detected in the eEPCs isolated from atherosclerotic patients compared to eEPCs from healthy donors. We have shown, for the first time, that the AP released factors activate eEPCs ex vivo by inducing their mobilization together with the expression of vasculogenic related markers. The present approach could be taken as a ex vivo model to study the initial activation of vascular cells in atherosclerosis and also to evaluate strategies looking to potentiate the mobilization of EPCs prior to clinical applications.


Assuntos
Células Progenitoras Endoteliais/metabolismo , Placa Aterosclerótica/metabolismo , Proteoma , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Humanos , Permeabilidade , Placa Aterosclerótica/patologia , Proteômica/métodos
7.
Biochem J ; 450(3): 511-21, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23240581

RESUMO

Engagement of the TCR (T-cell receptor) induces tyrosine phosphorylation of the LAT (linker for the activation of T-cells) adaptor, and thereby it recruits several cytosolic mediators for downstream signalling pathways. The Fas protein is essential for T-lymphocyte apoptosis, and following Fas engagement, many proteins are proteolytically cleaved, including several molecules that are important for the transduction of TCR intracellular signals. In the present study, we demonstrate that the adaptor LAT is also subject to a proteolytic cleavage in mature T-lymphocytes and thymocytes in response to Fas engagement, and also on TCR stimulation, and we identify three aspartic acid residues at which LAT is cleaved. Interestingly, these aspartic acid residues are located in proximity to several functionally important tyrosine residues of LAT, raising the possibility that their phosphorylation could modulate LAT cleavage. Consistent with that hypothesis, we show that induction of phosphorylation by pervanadate or H2O2 in Jurkat cells and thymocytes inhibits Fas-mediated cleavage of LAT. Moreover, we show that LAT proteolysis is also enhanced during anergy induction of primary human T-cells, suggesting that LAT cleavage may act as a regulator of TCR-mediated activation of T-cells and not only as a transducer of cell death promoting stimuli.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteólise , Receptor fas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células Cultivadas , Células HEK293 , Humanos , Células Jurkat , Ativação Linfocitária/genética , Ativação Linfocitária/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/genética , Fosforilação/fisiologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/fisiologia , Tirosina/metabolismo , Receptor fas/genética , Receptor fas/fisiologia
8.
Biology (Basel) ; 12(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37759563

RESUMO

Specific antigen recognition is one of the immune system's features that allows it to mount intense yet controlled responses to an infinity of potential threats. T cells play a relevant role in the host defense and the clearance of pathogens by means of the specific recognition of peptide antigens presented by antigen-presenting cells (APCs), and, to do so, they are equipped with a clonally distributed antigen receptor called the T-cell receptor (TCR). Upon the specific engagement of the TCR, multiple intracellular signals are triggered, which lead to the activation, proliferation and differentiation of T lymphocytes into effector cells. In addition, this signaling cascade also operates during T-cell development, allowing for the generation of cells that can be helpful in the defense against threats, as well as preventing the generation of autoreactive cells. Early TCR signals include phosphorylation events in which the tyrosine kinases Lck and ZAP70 are involved. The sequential activation of these kinases leads to the phosphorylation of the transmembrane adaptor LAT, which constitutes a signaling hub for the generation of a signalosome, finally resulting in T-cell activation. These early signals play a relevant role in triggering the development, activation, proliferation and apoptosis of T cells, and the negative regulation of these signals is key to avoid aberrant processes that could generate inappropriate cellular responses and disease. In this review, we will examine and discuss the roles of the tyrosine kinases Lck and ZAP70 and the membrane adaptor LAT in these cellular processes.

9.
Front Immunol ; 13: 1054920, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569841

RESUMO

The LAT transmembrane adaptor is essential to transduce intracellular signals triggered by the TCR. Phosphorylation of its four C-terminal tyrosine residues (136, 175, 195, and 235 in mouse LAT) recruits several proteins resulting in the assembly of the LAT signalosome. Among those tyrosine residues, the one found at position 136 of mouse LAT plays a critical role for T cell development and activation. The kinetics of phosphorylation of this residue is delayed as compared to the three other C-terminal tyrosines due to a conserved glycine residue found at position 135. Mutation of this glycine into an aspartate residue (denoted LATG135D) increased TCR signaling and altered antigen recognition in human Jurkat T cells and ex vivo mouse T cells. Here, using a strain of LATG135D knockin mice, we showed that the LATG135D mutation modifies thymic development, causing an increase in the percentage of CD4+CD8+ double-positive cells, and a reduction in the percentage of CD4+ and CD8+ single-positive cells. Interestingly, the LATG135D mutation alters thymic development even in a heterozygous state. In the periphery, the LATG135D mutation reduces the percentage of CD8+ T cells and results in a small increment of γδ T cells. Remarkably, the LATG135D mutation dramatically increases the percentage of central memory CD8+ T cells. Finally, analysis of the proliferation and activation of T lymphocytes shows increased responses of T cells from mutant mice. Altogether, our results reinforce the view that the residue preceding Tyr136 of LAT constitutes a crucial checkpoint in T cell development and activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Tirosina , Camundongos , Animais , Humanos , Tirosina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Mutação
10.
Cells ; 10(2)2021 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562083

RESUMO

Intracellular signaling through the T cell receptor (TCR) is essential for T cell development and function. Proper TCR signaling requires the sequential activities of Lck and ZAP-70 kinases, which result in the phosphorylation of tyrosine residues located in the CD3 ITAMs and the LAT adaptor, respectively. LAT, linker for the activation of T cells, is a transmembrane adaptor protein that acts as a scaffold coupling the early signals coming from the TCR with downstream signaling pathways leading to cellular responses. The leukemic T cell line Jurkat and its derivative mutants J.CaM1.6 (Lck deficient) and J.CaM2 (LAT deficient) have been widely used to study the first signaling events upon TCR triggering. In this work, we describe the loss of LAT adaptor expression found in a subline of J.CaM1.6 cells and analyze cis-elements responsible for the LAT expression defect. This new cell subline, which we have called J.CaM1.7, can re-express LAT adaptor after Protein Kinase C (PKC) activation, which suggests that activation-induced LAT expression is not affected in this new cell subline. Contrary to J.CaM1.6 cells, re-expression of Lck in J.CaM1.7 cells was not sufficient to recover TCR-associated signals, and both LAT and Lck had to be introduced to recover activatory intracellular signals triggered after CD3 crosslinking. Overall, our work shows that the new LAT negative J.CaM1.7 cell subline could represent a new model to study the functions of the tyrosine kinase Lck and the LAT adaptor in TCR signaling, and their mutual interaction, which seems to constitute an essential early signaling event associated with the TCR/CD3 complex.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Bases , Cálcio/metabolismo , Sobrevivência Celular , Ativação Enzimática , Humanos , Células Jurkat , Lentivirus/metabolismo , Proteínas de Membrana/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas/genética , Proteína Quinase C/metabolismo
11.
J Exp Med ; 196(12): 1617-26, 2002 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-12486104

RESUMO

A key molecule necessary for activation of T lymphocytes through their antigen-specific T cell receptor (TCR) is the transmembrane adaptor protein LAT (linker for activation of T cells). Upon TCR engagement, LAT becomes rapidly tyrosine phosphorylated and then serves as a scaffold organizing a multicomponent complex that is indispensable for induction of further downstream steps of the signaling cascade. Here we describe the identification and preliminary characterization of a novel transmembrane adaptor protein that is structurally and evolutionarily related to LAT and is expressed in B lymphocytes, natural killer (NK) cells, monocytes, and mast cells but not in resting T lymphocytes. This novel transmembrane adaptor protein, termed NTAL (non-T cell activation linker) is the product of a previously identified WBSCR5 gene of so far unknown function. NTAL becomes rapidly tyrosine-phosphorylated upon cross-linking of the B cell receptor (BCR) or of high-affinity Fcgamma- and Fc epsilon -receptors of myeloid cells and then associates with the cytoplasmic signaling molecules Grb2, Sos1, Gab1, and c-Cbl. NTAL expressed in the LAT-deficient T cell line J.CaM2.5 becomes tyrosine phosphorylated and rescues activation of Erk1/2 and minimal transient elevation of cytoplasmic calcium level upon TCR/CD3 cross-linking. Thus, NTAL appears to be a structural and possibly also functional homologue of LAT in non-T cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Proteínas , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores Fc/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/isolamento & purificação , Linhagem Celular , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Ativação Linfocitária , Tecido Linfoide/citologia , Tecido Linfoide/metabolismo , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Monócitos/imunologia , Monócitos/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/isolamento & purificação , Fosforilação , Receptores de IgE/metabolismo , Receptores de IgG/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
12.
Front Cell Dev Biol ; 8: 561503, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042995

RESUMO

The adaptor LAT plays a crucial role in the transduction of signals coming from the TCR/CD3 complex. Phosphorylation of some of its tyrosines generates recruitment sites for other cytosolic signaling molecules. Tyrosine 132 in human LAT is essential for PLC-γ activation and calcium influx generation. It has been recently reported that a conserved glycine residue preceding tyrosine 132 decreases its phosphorylation kinetics, which constitutes a mechanism for ligand discrimination. Here we confirm that a LAT mutant in which glycine 131 has been substituted by an aspartate (LATG131D) increases phosphorylation of Tyr132, PLC-γ activation and calcium influx generation. Interestingly, the LATG131D mutant has a slower protein turnover while being equally sensitive to Fas-mediated protein cleavage by caspases. Moreover, J.CaM2 cells expressing LATG131D secrete greater amounts of interleukin-2 (IL-2) in response to CD3/CD28 engagement. However, despite this increased IL-2 secretion, J.CaM2 cells expressing the LATG131D mutant are more sensitive to inhibition of IL-2 production by pre-treatment with anti-CD3, which points to a possible role of this residue in the generation of anergy. Our results suggest that the increased kinetics of LAT Tyr132 phosphorylation could contribute to the establishment of T cell anergy, and thus constitutes an earliest known intracellular event responsible for the induction of peripheral tolerance.

13.
Mater Sci Eng C Mater Biol Appl ; 108: 110404, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31923939

RESUMO

Commercial synthetic open-cell foams are an alternative to human cadaveric bone to simulate in vitro different scenarios of bone infiltration properties. Unfortunately, these artificial foams do not reproduce the anisotropic microstructure of natural bone and, consequently, their suitability in these studies is highly questionable. In order to achieve scaffolds that successfully mimic human bone, microstructural studies of both natural porous media and current synthetic approaches are necessary at different length scales. In this line, the present research was conducted to improve the understanding of local anisotropy in natural vertebral bone and synthetic bone-like porous foams. To attain this objective, small volumes of interest within these materials were reconstructed via micro-computed tomography. The anisotropy of the microstructures was analysed by means of both their main local histomorphometric features and the behaviour of an internal flow computed via computational fluid dynamics. The results showed that the information obtained from each of the micro-volumes of interest could be scaled up to understand not only the macroscopic averaged isotropic and/or anisotropic behaviour of the samples studied, but also to improve the design of macroscopic porous implants better fitting specific local histomorphometric scenarios. The results also clarify the discrepancies in the permeability obtained in the different micro-volumes of interest analysed. STATEMENT OF SIGNIFICANCE: A deep insight comparative study between the porous microstructure of healthy vertebral bone and that of synthetic bone-like open-cell rigid foams used in in vitro permeability studies of bone cement has been performed. The results obtained are of fundamental relevance to computational studies because, in order to achieve convergence values, the computation process should be limited to small computation domains or micro-volumes of interest. This makes the results specific spatial dependent and for this reason computation studies cannot directly capture the macroscopic average behaviour of an anisotropic porous structure such as the one observed in natural bones. The results derived from this study are also important because we have been able to show that the specific spatial information contained in only one healthy vertebra is enough to capture, from a geometric point of view, the same information of "specific surface area vs. porosity" - in other words, the same basic law - that can also be found in other human bones for different patients, even at different biological ages. This is an important finding that, despite the efforts made and the controversies formulated by other authors, should be studied more thoroughly with other bone species and tissues (healthy and/or diseased). Moreover, our results should help to understand that, with the extensive capabilities of current 3D printing technologies, there is an enormous potential in the design of biomimetic porous bone-like scaffolds for bone tissue engineering applications.


Assuntos
Osso e Ossos/química , Osso e Ossos/diagnóstico por imagem , Substâncias Viscoelásticas/química , Anisotropia , Cadáver , Humanos , Modelos Anatômicos , Impressão Tridimensional , Coluna Vertebral/diagnóstico por imagem , Microtomografia por Raio-X
14.
Mater Sci Eng C Mater Biol Appl ; 110: 110658, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32204086

RESUMO

Titanium alloy scaffolds with novel interconnected and non-periodic porous bone-like micro architecture were 3D-printed and filled with hydroxyapatite bioactive matrix. These novel metallic-ceramic hybrid scaffolds were tested in vitro by direct-contact osteoblast cell cultures for cell adhesion, proliferation, morphology and gene expression of several key osteogenic markers. The scaffolds were also evaluated in vivo by implanting them on transverse and spinous processes of sheep's vertebras and subsequent histology study. The in vitro results showed that: (a) cell adhesion, proliferation and viability were not negatively affected with time by compositional factors (quantitative MTT-assay); (b) the osteoblastic cells were able to adhere and to attain normal morphology (fluorescence microscopy); (c) the studied samples had the ability to promote and sustain the osteogenic differentiation, matrix maturation and mineralization in vitro (real-time quantitative PCR and mineralized matrix production staining). Additionally, the in vivo results showed that the hybrid scaffolds had greater infiltration, with fully mineralized bone after 6 months, than the titanium scaffolds without bioactive matrix. In conclusion, these novel hybrid scaffolds could be an alternative to the actual spinal fusion devices, due to their proved osteogenic performance (i.e. osteoinductive and osteoconductive behaviour), if further dimensional and biomechanical optimization is performed.


Assuntos
Apatitas/farmacologia , Coluna Vertebral/efeitos dos fármacos , Alicerces Teciduais/química , Titânio/farmacologia , Animais , Biomarcadores/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Cerâmica/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Porosidade , Ovinos
15.
Mol Immunol ; 45(7): 1863-71, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18078995

RESUMO

The nuclear factor of activated T cells (NFAT) family of transcription factors is pivotal for T lymphocyte functionality. All relevant NFAT activation events upon T cells stimulation such as nuclear translocation, DNA binding, and transcriptional activity have been shown to be dictated by its phosphorylation state. Here, we provide evidence for a novel post-translational modification that regulates NFAT. Indeed, NFATc1 and NFATc2 are poly(ADP-ribosyl)ated by poly-ADP-ribose polymerase-1 (PARP-1). Moreover, we have also found a physical interaction between PARP-1 and both NFATc1 and NFATc2. Interestingly, PARP is activated during T cell stimulation in the absence of DNA damage, leading to ADP-ribose polymers formation and transfer to nuclear acceptor proteins. Our data suggest that poly(ADP-ribosyl)ation modulates the activation of NFAT in T cells, as PARP inhibition causes an increase in NFAT-dependent transactivation and a delay in NFAT nuclear export. Poly(ADP-ribosyl)ation will expedited NFAT export from the nucleus directly or by priming/facilitating NFAT phosphorylation. Altogether, these data point to PARP-1 and poly(ADP-ribosyl)ation as a novel regulatory mechanism of NFAT at nuclear level, suggesting a potential use of PARP as a new therapeutic target in the modulation of NFAT.


Assuntos
Fatores de Transcrição NFATC/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Linfócitos T/enzimologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Adulto , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Indução Enzimática/efeitos dos fármacos , Citometria de Fluxo , Células HeLa , Histonas/metabolismo , Humanos , Ionomicina/farmacologia , Células Jurkat , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Fosforilação/efeitos dos fármacos , Poli Adenosina Difosfato Ribose/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases , Ligação Proteica/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Ativação Transcricional/efeitos dos fármacos
16.
Front Immunol ; 14: 1266576, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37614241

Assuntos
Linfócitos T
17.
J Nanopart Res ; 20(11): 305, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524191

RESUMO

Hydrophilic and homogeneous sub-10 nm blue light-emitting gold nanoparticles (NPs) functionalized with different capping agents have been prepared by simple chemical routes. Structure, average, size, and surface characteristics of these NPs have been widely studied, and the stability of colloidal NP solutions at different pH values has been evaluated. Au NPs show blue PL emission, particularly in the GSH capped NPs, in which the thiol-metal core transference transitions considerably enhance the fluorescent emission. The influence of capping agent and NP size on cytotoxicity and on the fluorescent emission are analyzed and discussed in order to obtain Au NPs with suitable features for biomedical applications. Cytotoxicity of different types of gold NPs has been determined using NPs at high concentrations in both tumor cell lines and primary cells. All NPs used show high biocompatibility with low cytotoxicity even at high concentration, while Au-GSH NPs decrease viability and proliferation of both a tumor cell line and primary lymphocytes.

18.
Front Immunol ; 9: 115, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29456532

RESUMO

The adaptor protein linker for activation of T cells (LAT) has an essential role transducing activatory intracellular signals coming from the TCR/CD3 complex. Previous reports have shown that upon T-cell activation, LAT interacts with the tyrosine kinase Lck, leading to the inhibition of its kinase activity. LAT-Lck interaction seemed to depend on a stretch of negatively charged amino acids in LAT. Here, we have substituted this segment of LAT between amino acids 113 and 126 with a non-charged segment and expressed the mutant LAT (LAT-NIL) in J.CaM2 cells in order to analyze TCR signaling. Substitution of this segment in LAT prevented the activation-induced interaction with Lck. Moreover, cells expressing this mutant form of LAT showed a statistically significant increase of proximal intracellular signals such as phosphorylation of LAT in tyrosine residues 171 and 191, and also enhanced ZAP70 phosphorylation approaching borderline statistical significance (p = 0.051). Nevertheless, downstream signals such as Ca2+ influx or MAPK pathways were partially inhibited. Overall, our data reveal that LAT-Lck interaction constitutes a key element regulating proximal intracellular signals coming from the TCR/CD3 complex.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aminoácidos/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linhagem Celular , Humanos , Proteína-Tirosina Quinase ZAP-70/metabolismo
19.
Adv Immunol ; 87: 1-25, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16102570

RESUMO

LAT (linker for activation of T cells) is an integral membrane adaptor protein that constitutes in T cells a major substrate of the ZAP-70 protein tyrosine kinase. LAT coordinates the assembly of a multiprotein signaling complex through phosphotyrosine-based motifs present within its intracytoplasmic segment. The resulting "LAT signalosome" links the TCR to the main intracellular signalling pathways that regulate T-cell development and T-cell function. Early studies using transformed T-cell lines suggested that LAT acts primarily as a positive regulator of T-cell receptor (TCR) signalling. The partial or complete inhibition of T-cell development observed in several mouse lines harboring mutant forms of LAT was congruent with that view. More recently, LAT "knock-ins" harboring point mutations in the four COOH-terminal tyrosine residues, were found to develop lymphoproliferative disorders involving polyclonal T cells that produced high amounts of T helper-type 2 (Th2) cytokines. This unexpected finding revealed that LAT also constitutes a negative regulator of TCR signalling and T-cell homeostasis. Although LAT is also expressed in mast cells, natural killer cells, megakaryocytes, platelets, and early B cells, the present review specifically illustrates the role LAT plays in the development and function of mouse T cells. As discussed, the available data underscore that a novel immunopathology proper to defective LAT signalosome is taking shape.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas de Membrana/imunologia , Fosfoproteínas/imunologia , Linfócitos T/imunologia , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Diferenciação Celular , Humanos , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/imunologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Camundongos Mutantes , Modelos Imunológicos , Fosfoproteínas/química , Fosfoproteínas/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T/citologia , Células Th2/citologia , Células Th2/imunologia
20.
Front Microbiol ; 8: 2595, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29354102

RESUMO

Hepatitis C virus core protein is a highly basic viral protein that multimerizes with itself to form the viral capsid. When expressed in CD4+ T lymphocytes, it can induce modifications in several essential cellular and biological networks. To shed light on the mechanisms underlying the alterations caused by the viral protein, we have analyzed HCV-core subcellular localization and its associations with host proteins in Jurkat T cells. In order to investigate the intracellular localization of Hepatitis C virus core protein, we have used a lentiviral system to transduce Jurkat T cells and subsequently localize the protein using immunoelectron microscopy techniques. We found that in Jurkat T cells, Hepatitis C virus core protein mostly localizes in the nucleus and specifically in the nucleolus. In addition, we performed pull-down assays combined with Mass Spectrometry Analysis, to identify proteins that associate with Hepatitis C virus core in Jurkat T cells. We found proteins such as NOLC1, PP1γ, ILF3, and C1QBP implicated in localization and/or traffic to the nucleolus. HCV-core associated proteins are implicated in RNA processing and RNA virus infection as well as in functions previously shown to be altered in Hepatitis C virus core expressing CD4+ T cells, such as cell cycle delay, decreased proliferation, and induction of a regulatory phenotype. Thus, in the current work, we show the ultrastructural localization of Hepatitis C virus core and the first profile of HCV core associated proteins in T cells, and we discuss the functions and interconnections of these proteins in molecular networks where relevant biological modifications have been described upon the expression of Hepatitis C virus core protein. Thereby, the current work constitutes a necessary step toward understanding the mechanisms underlying HCV core mediated alterations that had been described in relevant biological processes in CD4+ T cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA