Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(6)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188016

RESUMO

Rheumatoid Arthritis (RA), Systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS) are the systemic autoimmune diseases (SADs) most associated with an increased risk of developing cardiovascular (CV) events. Cardiovascular disease (CVD) in SADs results from a complex interaction between traditional CV-risk factors, immune deregulation and disease activity. Oxidative stress, dyslipidemia, endothelial dysfunction, inflammatory/prothrombotic mediators (cytokines/chemokines, adipokines, proteases, adhesion-receptors, NETosis-derived-products, and intracellular-signaling molecules) have been implicated in these vascular pathologies. Genetic and genomic analyses further allowed the identification of signatures explaining the pro-atherothrombotic profiles in RA, SLE and APS. However, gene modulation has left significant gaps in our understanding of CV co-morbidities in SADs. MicroRNAs (miRNAs) are emerging as key post-transcriptional regulators of a suite of signaling pathways and pathophysiological effects. Abnormalities in high number of miRNA and their associated functions have been described in several SADs, suggesting their involvement in the development of atherosclerosis and thrombosis in the setting of RA, SLE and APS. This review focusses on recent insights into the potential role of miRNAs both, as clinical biomarkers of atherosclerosis and thrombosis in SADs, and as therapeutic targets in the regulation of the most influential processes that govern those disorders, highlighting the potential diagnostic and therapeutic properties of miRNAs in the management of CVD.


Assuntos
Doenças Autoimunes/complicações , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , MicroRNAs/metabolismo , Síndrome Antifosfolipídica/complicações , Artrite Reumatoide/complicações , Aterosclerose/etiologia , Biomarcadores , Doenças Cardiovasculares/genética , Regulação da Expressão Gênica , Humanos , Lúpus Eritematoso Sistêmico/complicações , MicroRNAs/genética , Estresse Oxidativo , Fatores de Risco , Transdução de Sinais/genética , Trombose/etiologia
2.
Arthritis Res Ther ; 20(1): 100, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29848360

RESUMO

BACKGROUND: Systemic lupus erythematosus (SLE) is a common systemic autoimmune disease with a complex genetic inheritance. Genome-wide association studies (GWAS) have significantly increased the number of significant loci associated with SLE risk. To date, however, established loci account for less than 30% of the disease heritability and additional risk variants have yet to be identified. Here we performed a GWAS followed by a meta-analysis to identify new genome-wide significant loci for SLE. METHODS: We genotyped a cohort of 907 patients with SLE (cases) and 1524 healthy controls from Spain and performed imputation using the 1000 Genomes reference data. We tested for association using logistic regression with correction for the principal components of variation. Meta-analysis of the association results was subsequently performed on 7,110,321 variants using genetic data from a large cohort of 4036 patients with SLE and 6959 controls of Northern European ancestry. Genetic association was also tested at the pathway level after removing the effect of known risk loci using PASCAL software. RESULTS: We identified five new loci associated with SLE at the genome-wide level of significance (p < 5 × 10- 8): GRB2, SMYD3, ST8SIA4, LAT2 and ARHGAP27. Pathway analysis revealed several biological processes significantly associated with SLE risk: B cell receptor signaling (p = 5.28 × 10- 6), CTLA4 co-stimulation during T cell activation (p = 3.06 × 10- 5), interleukin-4 signaling (p = 3.97 × 10- 5) and cell surface interactions at the vascular wall (p = 4.63 × 10- 5). CONCLUSIONS: Our results identify five novel loci for SLE susceptibility, and biologic pathways associated via multiple low-effect-size loci.


Assuntos
Loci Gênicos/genética , Estudo de Associação Genômica Ampla/métodos , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/genética , Estudos de Coortes , Variação Genética/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA