Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 355: 120448, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422850

RESUMO

Salinity stress poses a significant challenge to agriculture, impacting soil health, plant growth and contributing to greenhouse gas (GHG) emissions. In response to these intertwined challenges, the use of biochar and its nanoscale counterpart, nano-biochar, has gained increasing attention. This comprehensive review explores the heterogeneous role of biochar and nano-biochar in enhancing salt resilience in plants and soil while concurrently mitigating GHG emissions. The review discusses the effects of these amendments on soil physicochemical properties, improved water and nutrient uptake, reduced oxidative damage, enhanced growth and the alternation of soil microbial communities, enhance soil fertility and resilience. Furthermore, it examines their impact on plant growth, ion homeostasis, osmotic adjustment and plant stress tolerance, promoting plant development under salinity stress conditions. Emphasis is placed on the potential of biochar and nano-biochar to influence soil microbial activities, leading to altered emissions of GHG emissions, particularly nitrous oxide(N2O) and methane(CH4), contributing to climate change mitigation. The comprehensive synthesis of current research findings in this review provides insights into the multifunctional applications of biochar and nano-biochar, highlighting their potential to address salinity stress in agriculture and their role in sustainable soil and environmental management. Moreover, it identifies areas for further investigation, aiming to enhance our understanding of the intricate interplay between biochar, nano-biochar, soil, plants, and greenhouse gas emissions.


Assuntos
Gases de Efeito Estufa , Resiliência Psicológica , Gases de Efeito Estufa/análise , Solo/química , Carvão Vegetal/química , Agricultura , Cloreto de Sódio , Metano/análise , Óxido Nitroso/análise , Dióxido de Carbono/análise
2.
Molecules ; 28(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37570764

RESUMO

Oil spill remediation plays a vital role in mitigating the environmental impacts caused by oil spills. The chemical method is one of the widely recognized approaches in chemical surfactants. However, the most commonly used chemical surfactants are toxic and non-biodegradable. Herein, two biocompatible and biodegradable surfactants were synthesized from orange peel using the ionic liquid 1-butyl-3-methylimidazolium chloride (BMIMCl) and organic solvent dimethylacetamide (CH3CN(CH3)2) as reaction media. The acronyms SOPIL and SOPOS refer to the surfactants prepared with BMIMCl and dimethylacetamide, respectively. The surface tension, dispersant effectiveness, optical microscopy, and emulsion stability test were conducted to examine the comparative performance of the synthesized surfactants. The Baffled flask test (BFT) was carried out to determine the dispersion effectiveness. The toxicity test was performed against zebrafish (Danio rerio), whereas the closed bottle test (CBT) evaluated biodegradability. The results revealed that the critical micelle concentration (CMC) value of SOPIL was lower (8.57 mg/L) than that of SOPOS (9.42 mg/L). The dispersion effectiveness values for SOPIL and SOPOS were 69.78% and 40.30%, respectively. The acute toxicity test demonstrated that SOPIL was 'practically non-toxic' with a median lethal concentration of more than 1000 mg/L after 96 h. The biodegradation rate was recorded as higher than 60% for both surfactants within 28 days, demonstrating their readily biodegradable nature. Considering these attributes, biocompatible and biodegradable surfactants derived from orange peel emerge as a promising and sustainable alternative for oil spill remediation.


Assuntos
Citrus sinensis , Poluição por Petróleo , Poluentes Químicos da Água , Animais , Tensoativos/toxicidade , Tensoativos/metabolismo , Poluição por Petróleo/análise , Citrus sinensis/metabolismo , Peixe-Zebra/metabolismo , Poluentes Químicos da Água/análise
3.
Ecotoxicol Environ Saf ; 234: 113385, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35278995

RESUMO

In semi-arid regions, post-restoration vegetation recovery on abandoned agricultural lands often fails due to inherently low organic matter content and poor soil fertility conditions, including phosphorus (P). As such, amending these soils with controlled release P fertilizer, especially with suitable P solubilizing bacteria (PSB) may promote plant growth and productivity by stimulating biological P fertility. To this aim, a pot study was performed to evaluate the agronomic potential of maize and soil biological P pools, using encapsulated (ENRP) and non-encapsulated (NRP) nano-rock phosphate as the P fertilizer source, on reclaimed agricultural soil in the presence and absence of PSB inoculant. The experiment was setup following a 3 × 2 factorial arrangement with four replicates. Without PSB, NRP treatment showed marginal positive effects on plant growth, P nutrition and P use efficiency (PUE) compared to control treatment. Although larger gains with NRP treatment were more noticeable under PSB inoculation, ENRP was the most convenient slow-release P fertilizer, increasing plant growth, P nutrition and grain yield compared to all treatments. Importantly, PSB inoculation with ENRP resulted in significantly higher increase in soil CaCl2-P (8.91 mg P kg soil-1), citrate-P (26.98 mg P kg soil-1), enzyme-P (18.98 mg P kg soil-1), resin-P (11.41 mg P kg soil-1), and microbial-P (18.94 mg P kg soil-1), when compared to all treatment combinations. Although a decrease in soil HCl-P content was observed with both types of P fertilizer, significant differences were found only with PSB inoculation. A significant increase in soil biological P pools could be due to the higher specific area and crystalline structure of nano materials, providing increased number of active sites for PSB activity in the presence of biobased encapsulated shell. Furthermore, the increase in PSB abundance, higher root carboxylate secretions, and decreased rhizosphere pH in response to nano-structured P fertilizer, implies greater extension of rhizosphere promoting greater P mobilization and/or solubilization, particularly under PSB inoculated conditions. We conclude that cropping potential of abandoned agricultural lands can be enhanced by the use of nano-rock phosphate in combination with PSB inoculant, establishing a favorable micro-environment for higher plant growth and biochemical P fertility.

4.
Int J Phytoremediation ; 24(4): 364-372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34282979

RESUMO

During the current study, the effects of magnesium oxide nanoparticles (5 mmol/L) were observed on the growth and mineral nutrients of Daucus carota under lead (Pb) stress. The results demonstrated that Pb stress decreased the growth and photosynthetic rate of D. carota plants. Furthermore, Pb stressed plants showed decreased uptake of mineral nutrients including Zn, Na, Fe, K, Ca, Mg, K, and Cu. Similarly, Pb stressed plants showed enhanced electrolyte leakage (EL) and malondialdehyde (MDA) content. However, magnesium oxide nanoparticles detoxified ROS to mitigate Pb stress and improved the growth of plants. Magnesium oxide nanoparticles also escalated the activity of antioxidant enzymes including superoxide dismutase (SOD) and Catalase (CAT). A higher amount of Pb content was observed in the roots as compared to the shoot of plants. Lead toxicity reduced manganese accumulation in D. carota plants. The increased concentration of iron, manganese, copper, and zinc advocates stress the ameliorative role of Pb stress in plants. Novelty statementThe role of MgONPs in the alleviation of Pb-toxicity in Daucus carota has never been exploited. In addition, the potential of MgONPs to enhance nutritional content in D. carota via modulation in antioxidant system and polyamines have never been reported.


Assuntos
Daucus carota , Nanopartículas , Antioxidantes , Biodegradação Ambiental , Chumbo/toxicidade , Óxido de Magnésio , Poliaminas , Superóxido Dismutase
5.
Molecules ; 27(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36431876

RESUMO

In the current study, we have synthesized an imidazolium based cross-linked polymer, namely, 1-vinyl-3-ethylimidazolium bis(trifluoromethylsulfonyl)imide (poly[veim][Tf2N]-TRIM) using trimethylolpropane trimethacrylate as cross linker, and demonstrated its efficiency for the removal of two extensively used ionic dyes­methylene blue and orange-II­from aqueous systems. The detailed characterization of the synthesized poly[veim][Tf2N]-TRIM was performed with the help of 1H NMR, TGA, FT-IR and FE-SEM analysis. The concentration of dyes in aqueous samples before and after the adsorption process was measured using an UV-vis spectrophotometer. The process parameters were optimised, and highest adsorption was obtained at a solution pH of 7.0, adsorbent dosage of 0.75 g/L, contact time of 7 h and dye concentrations of 100 mg/L and 5.0 mg/L for methylene blue and orange-II, respectively. The adsorption kinetics for orange-II and methylene blue were well described by pseudo-first-order and pseudo−second-order models, respectively. Meanwhile, the process of adsorption was best depicted by Langmuir isotherms for both the dyes. The highest monolayer adsorption capacities for methylene blue and orange-II were found to be 1212 mg/g and 126 mg/g, respectively. Overall, the synthesized cross-linked poly[veim][Tf2N]-TRIM effectively removed the selected ionic dyes from aqueous samples and provided >90% of adsorption efficiency after four cycles of adsorption. A possible adsorption mechanism between the synthesised polymeric adsorbent and proposed dyes is presented. It is further suggested that the proposed ionic liquid polymer adsorbent could effectively remove other ionic dyes and pollutants from contaminated aqueous systems.


Assuntos
Líquidos Iônicos , Poluentes Químicos da Água , Purificação da Água , Corantes/química , Adsorção , Azul de Metileno/química , Cinética , Polímeros , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/química , Água
6.
Ecotoxicol Environ Saf ; 213: 112047, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33601172

RESUMO

In this study, we have evaluated the role of karrikin (KAR1) against the absorption and translocation of a persistent organic pollutant (POP), 2,4,4'-Tribromodiphenyl ether (BDE-28) in plants, in the presence of two other stressors, cadmium (Cd) and high temperature. Furthermore, it correlates the physiological damages of Brassica alboglabra with the three stresssors separately. The results revealed that the post-germination application of KAR1 successfully augmented the growth (200%) and pertinent physiochemical parameters of B. alboglabra. KAR1 hindered air absorption of BDE-28 in plant tissues, and reduced its translocation coefficient (TF). Moreover, BDE-28 was the most negatively correlated (-0.9) stressor with chlorophyll contents, while the maximum mitigation by KAR1 was also achieved agaist BDE-28. The effect of temperature was more severe on soluble sugars (0.51), antioxidative machinery (-0.43), and osmoregulators (0.24). Cd exhibited a stronger inverse interrelation with the enzymatic antioxidant cascade. Application of KAR1 mitigated the deleterious effects of Cd and temperature stress on plant physiological parameters along with reduced aero-concentration factor, TF, and metal tolerance index. The phytohormone reduced lipid peroxidation by decreasing synthesis of ROS and persuading its breakdown. The stability of cellular membranes was perhaps due to the commotion of KAR1 as a growth-promoting phytohormone. In the same way, KAR1 supplementation augmented the membrane stability index, antioxidant defense factors, and removal efficiency of the pollutants. Consequently, the exogenously applied KAR1 can efficiently alleviate Cd stress, heat stress, and POP toxicity.


Assuntos
Brassica/fisiologia , Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Antioxidantes/metabolismo , Brassica/metabolismo , Cádmio/metabolismo , Clorofila/metabolismo , Furanos , Germinação/efeitos dos fármacos , Peroxidação de Lipídeos , Reguladores de Crescimento de Plantas/metabolismo , Bifenil Polibromatos , Piranos
7.
Int J Phytoremediation ; 23(2): 119-129, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32755316

RESUMO

Hydrocarbon stress (HS) has been causing decreased plant growth and productivity. Putrescine (Put) and growth promoting microbes are vital for plant growth and development under hydrocarbon stress. Current research work was carried out to evaluate the potential of Bacillus megaterium OSR-3 alone and in combination with Put to alleviate HS in Nicotiana tabacum (L.). The crude petroleum contaminated soil significantly reduced growth attributes of N. tabacum. B. megaterium OSR-3 inoculated plants subjected to HS exhibited improved photosynthetic rate, gas exchange characteristics, poline contents and protein level. Furthermore, bacterial inoculation enhanced the antioxidative activity of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) in tobacco plants subjected to HS. The HS alleviation in B. megaterium OSR-3 inoculated N. tabacum can be credited to the heightened activity of antioxidative enzymes, reduction in hydrogen peroxide (H2O2) and abridged synthesis of malondialdehyde (MDA). The increased synthesis of indole acetic acid (IAA) in HS stressed N. tabacum plants treated with co-application of B. megaterium OSR-3 and Put attenuated toxicity and amplified growth of plants. Additionally, the co-application of B. megaterium OSR-3 and Put also upregulated the activity of antioxidative enzymes and induced augmented level of proline and IAA in plants under HS regimes. Current research provides novel insight into the potential and mechanism of B. megaterium OSR-3 and Put in mitigation of HS in N. tabacum plants.


Assuntos
Bacillus megaterium , Nicotiana , Antioxidantes , Biodegradação Ambiental , Hidrocarbonetos , Peróxido de Hidrogênio , Putrescina
8.
BMC Genomics ; 21(1): 365, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32414328

RESUMO

BACKGROUND: Pumpkins (Cucurbita moschata; Cucurbitaceae) are valued for their fruits and seeds and are rich in nutrients. Carotenoids and sugar contents, as main feature of pumpkin pulp, are used to determine the fruit quality. RESULTS: Two pumpkin germplasms, CMO-X and CMO-E, were analyzed regarding the essential quality traits such as dry weight, soluble solids, organic acids, carotenoids and sugar contents. For the comparison of fruit development in these two germplasms, fruit transcriptome was analyzed at 5 different developmental stages from 0 d to 40 d in a time course manner. Putative pathways for carotenoids biosynthesis and sucrose metabolism were developed in C. moschata fruit and homologs were identified for each key gene involved in the pathways. Gene expression data was found consistent with the accumulation of metabolites across developmental stages and also between two germplasms. PSY, PDS, ZEP, CRTISO and SUS, SPS, HK, FK were found highly correlated with the accumulation of carotenoids and sucrose metabolites, respectively, at different growth stages of C. moschata as shown by whole transcriptomic analysis. The results of qRT-PCR analysis further confirmed the association of these genes. CONCLUSION: Developmental regulation of the genes associated with the metabolite accumulation can be considered as an important factor for the determination of C. moschata fruit quality. This research will facilitate the investigation of metabolic profiles in other cultivars.


Assuntos
Cucurbita/crescimento & desenvolvimento , Metaboloma , Desenvolvimento Vegetal/genética , Transcriptoma , Ácidos/metabolismo , Vias Biossintéticas/genética , Carotenoides/metabolismo , Cucurbita/genética , Cucurbita/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Reprodutibilidade dos Testes , Açúcares/metabolismo
9.
J Sci Food Agric ; 100(4): 1616-1624, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31773731

RESUMO

BACKGROUND: Brassica oleracea var. alboglabra (Chinese kale) is an important vegetable grown in southern China. This study was aimed at searching for environmentally friendly and affordable approaches to increase the production of medicinally relevant glucosinolates and phenolic compounds in Chinese kale plants. For this purpose, the foliar application of liquiritin at 0 (control), 250, 500 and 750 ppm was tested starting from the four-leaf stage and repeated every two weeks until plants were two months old. RESULTS: Foliar application of liquiritin in Chinese kale plants significantly increased glucosinolates and total phenolic content, in a dose-dependent manner. Compared with control plants, 2.3- and 1.9-fold increases in yields of glucosinolates and total phenolic content, respectively, were corroborated in Chinese kale plants treated with 750 ppm of liquiritin. Along with rises in the content of eight different glucosinolates, liquiritin elicitation effectively increased the concentration of glycosilated and acylated flavonoids and hydroxycinnamic acids. The expression of genes involved in glucosinolate and phenolic biosynthesis was significantly higher in liquiritin-treated plants as compared to controls. CONCLUSIONS: Liquiritin elicitation is a feasible and environmentally friendly practice for increasing the production of medicinally important glucosinolates and phenolic compounds in Chinese kale, which may improve this plant's value as a nutraceutical food. This study also contributes to understanding the molecular mechanisms underlying liquiritin elicitation. This is the first report documenting the use of liquiritin for an elicitation purpose in plants. © 2019 Society of Chemical Industry.


Assuntos
Brassica/metabolismo , Produção Agrícola/métodos , Flavanonas/farmacologia , Glucosídeos/farmacologia , Glucosinolatos/análise , Fenóis/análise , Brassica/química , Brassica/efeitos dos fármacos , China , Produção Agrícola/instrumentação , Flavonoides/análise , Flavonoides/metabolismo , Glucosinolatos/metabolismo , Fenóis/metabolismo , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Verduras/química , Verduras/efeitos dos fármacos , Verduras/metabolismo
10.
J Sci Food Agric ; 99(14): 6139-6154, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31152450

RESUMO

BACKGROUND: Tomato is an important food item and a cocktail of phytonutrients. In the current study, metabolites from a non-pathogenic fungal species Penicillium oxalicum have been exploited to obtain nutritionally augmented tomato fruits from the plants to better withstand against Alternaria alternata infection. RESULTS: Initially, bioactivity-guided assay and chromatographic analyses identified the bioactive metabolites of P. oxalicum [benzenedicarboxylic acid (BDA) and benzimidazole]. Then, ≥3 times elevated quantities of vitamins and other nutritional elements (protein, fat, fibers, and carbohydrates) were achieved by the foliar application of BDA. The maximum increase (625.81%) was recorded in riboflavin contents; however, thiamine showed the second highest enhancement (542.86%). Plant metabolites analysis revealed that jasmonic acid contents were boosted 121.53% to significantly enhance guaiacyl lignin defenses along with the reduction in coumarin contents. The protein profile analysis explored three most actively responding protein species toward BDA applications, (i) palmitoyltransferase protein Q9FLM3; (ii) serine/threonine-protein kinase O48814; and (iii) E3 ubiquitin-protein ligase Q9FJQ8. The O48814 improved plant defenses; whereas, Q9FJQ8 protein was negatively regulating cysteine-type endopeptidase activity and assisted plant to resist schedule alterations. Tomato cultivar with more active innate metabolism was found to be more responsive toward BDA. Furthermore, the bioactive compounds were enriched by using the two-step extraction method of ethyl acetate and chloroform, respectively. CONCLUSION: Penicillium oxalicum a non-pathogenic fungal species, produced BDA, induced nutritional contents in tomato and protected it against Alternaria alternata. The current study is the first report on the bioactivity of BDA and benzimidazole concerning the nutritional enhancement and plant defense improvement. © 2019 Society of Chemical Industry.


Assuntos
Alternaria/fisiologia , Ácidos Dicarboxílicos/farmacologia , Penicillium/metabolismo , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Solanum lycopersicum/microbiologia , Ubiquitina-Proteína Ligases/genética , Inoculantes Agrícolas/química , Inoculantes Agrícolas/metabolismo , Ácidos Dicarboxílicos/metabolismo , Frutas/química , Frutas/genética , Frutas/metabolismo , Frutas/microbiologia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Valor Nutritivo , Penicillium/química , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
11.
Int J Phytoremediation ; 20(3): 274-283, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29053340

RESUMO

Heavy metal contaminated agricultural soils are one of the most important constraints for successful cultivation of crops. The current research was conducted to evaluate the role of potassium (K) on plant growth and amelioration of cadmium (Cd) stress in Gladiolus grandiflora under greenhouse conditions. G. grandiflora corms were sown in media contaminated with 0 (C), 50 (Cd50) and 100 (Cd100) mg Cd kg-1 soil. The plants growing in Cd-contaminated media exhibited reduced gas exchange attributes, chlorophyll (Chl) contents, vegetative and reproductive growth as compared to control. The plants raised in Cd contaminated media showed reduced nutrition yet higher Cd contents. However, supplementation of 60 mg Kg-1 K in treated plants (C+K, Cd50+K and Cd100+K) improved quantity of total soluble protein and proline (Pro) along with activity of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX) under Cd stress. Similarly, K supplementation reduced the level of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in treated plants. Potassium supplemented plants exhibited better vegetative and reproductive growth. The improved stress tolerance in K supplemented plants was attributed to the reduced quantity of MDA and H2O2, enhanced synthesis of protein, proline, phenols, flavonides and improved activity of antioxidant enzymes. The present research supports the application of K for alleviation of Cd stress in G. grandiflora.


Assuntos
Cádmio , Potássio , Biodegradação Ambiental , Peróxido de Hidrogênio , Raízes de Plantas
12.
Int J Phytoremediation ; 20(6): 581-592, 2018 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-29688047

RESUMO

The current study was performed to assess the effect of Burkholderia cepacia CS8 on the phytoremediation of cadmium (Cd) by Catharanthus roseus grown in Cd-contaminated soil. The plants cultivated in Cd amended soil showed reduced growth, dry mass, gas-exchange capacity, and chlorophyll contents. Furthermore, the plants exhibited elevated levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2) under Cd stress. The bacterized plants showed higher shoot length, root length; fresh and dry weight. The improved stress tolerance in inoculated plants was attributed to the reduced quantity of MDA and H2O2, enhanced synthesis of protein, proline, phenols, flavonoids, and improved activity of antioxidant enzymes including peroxidase, superoxide dismutase, ascorbate peroxidase, and catalase. Similarly, the 1-aminocyclopropane-1-carboxylate deaminase activity, phosphate solubilization, auxin, and siderophore production capability of B. cepacia CS8 improved growth and stress alleviation in treated plants. The bacterial inoculation enhanced the amount of water extractable Cd from soil. Furthermore, the inoculated plants showed higher bioconcentration factor and translocation factor. The current study exhibits that B. cepacia CS8 improves stress alleviation and phytoextraction potential of C. roseus plants growing under Cd stress.


Assuntos
Burkholderia cepacia , Catharanthus , Biodegradação Ambiental , Cádmio , Peróxido de Hidrogênio
13.
Int J Phytoremediation ; 19(6): 514-521, 2017 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27819493

RESUMO

The remediation of heavy metal-contaminated soils has become a critical issue due to toxic effects of these metals on living organisms. The current research was conducted to study the effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the growth and phytoremediation potential of Catharanthus roseus in Cu- and Pb-contaminated soils. The bacterial strains exhibited significantly higher level of water-extractable Pb and Cu in Pb, Cu, and Cu+Pb-contaminated. The P. fluorescens RB4 inoculated plants, produced 102%, 48%, and 45% higher fresh weight (FW) in soils contaminated with Cu, Pb, and both elements, respectively, as compared to un-inoculated control plants. Similarly, B. subtilis 189 inoculated plants produced 108%, 43%, and 114% more FW in the presence of Cu, Pb, and both elements. The plants co-cultivated with both bacteria exhibited 121%, 102%, and 177% higher FW, in Cu, Pb, and both elements contaminated soils, as compared to respective un-inoculated control. Co-cultivation of P. fluorescens RB4, B. subtilis 189, and P. fluorescens RB4 + B. subtilis 189 resulted in higher accumulation of Cu and Pb in shoots of the C. roseus grown in contaminated soils as compared to un-inoculated control. Bacterial treatments also improved the translocation and metal bioconcentration factors. The growth and phytoextraction capability of C. roseus was improved by inoculation of P. fluorescens RB4 and B. subtilis 189.


Assuntos
Bacillus subtilis/fisiologia , Catharanthus/metabolismo , Cobre/metabolismo , Chumbo/metabolismo , Pseudomonas fluorescens/fisiologia , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Catharanthus/crescimento & desenvolvimento , Catharanthus/microbiologia
14.
Int J Phytoremediation ; 19(9): 813-824, 2017 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-28699781

RESUMO

The current research was performed to evaluate the effect of Bacillus megaterium MCR-8 on mitigation of nickel (Ni) stress in Vinca rosea grown on Ni-contaminated soil (50, 100, and 200 mg Ni kg-1 soil). The treated plants exhibited reduced growth, biomass, gas exchange capacity, and chlorophyll (Chl) content under Ni stress. The inoculated plants growing in Ni-contaminated media exhibited relatively higher growth, total soluble protein, and proline contents. Similarly, bacterial inoculation improved the activity of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) under Ni stress. The Ni stress alleviation in inoculated plants was attributed to the reduced level of malondialdehyde (MDA) and hydrogen peroxide (H2O2), enhanced synthesis of protein, proline, phenols, and flavonides in conjunction with improved activity of antioxidant enzymes. The growth-promoting characteristics of microbe such as 1-aminocyclopropane-1-carboxylate deaminase (ACCD) and phosphate solubilization activity, siderophore, and auxin production capability also improved the growth and stress mitigation in inoculated plants. Furthermore, the inoculated plants exhibited higher value for bioconcentration factor (BCF), translocation factor (TF), and resulted in higher loss of Ni content from soil. The current results exhibited the beneficial role of B. megaterium MCR-8 regarding stress alleviation and Ni phytoextraction by V. rosea.


Assuntos
Bacillus megaterium , Biodegradação Ambiental , Catharanthus , Níquel , Peróxido de Hidrogênio , Poluentes do Solo
15.
Int J Phytoremediation ; 19(5): 470-477, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-27739873

RESUMO

In our current study, four nickel-tolerant (Ni-tolerant) bacterial species viz, Bacillus thuringiensis 002, Bacillus fortis 162, Bacillus subtilis 174, and Bacillus farraginis 354, were screened using Ni-contaminated media. The screened microbes exhibited positive results for synthesis of indole acetic acid (IAA), siderophore production, and phosphate solubilization. The effects of these screened microbes on Ni mobility in the soil, root elongation, plant biomass, and Ni uptake in Althea rosea plants grown in Ni-contaminated soil (200 mg Ni kg-1) were evaluated. Significantly higher value for water-extractable Ni (38 mg kg-1) was observed in case of Ni-amended soils inoculated with B. subtilis 174. Similarly, B. thuringiensis 002, B. fortis 162, and B. subtilis 174 significantly enhanced growth and Ni uptake in A. rosea. The Ni uptake in the shoots and roots of B. subtilis 174-inoculated plants enhanced up to 1.7 and 1.6-fold, respectively, as compared to that in the un-inoculated control. Bacterial inoculation also significantly improved the root and shoot biomass of treated plants. The current study presents a novel approach for bacteria-assisted phytoremediation of Ni-contaminated areas.


Assuntos
Althaea/metabolismo , Bacillus/metabolismo , Níquel/metabolismo , Poluentes do Solo/metabolismo , Althaea/crescimento & desenvolvimento , Althaea/microbiologia , Biodegradação Ambiental
16.
Biochim Biophys Acta ; 1848(2): 544-53, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25445677

RESUMO

Trapping in the endosomes is currently believed to represent the main barrier for transfection. Peptides, which allow endosomal escape have been demonstrated to overcome this barrier, similarly to the entry of viruses. However, the design principles of such endosomolytic peptides remain unclear. We characterized three analogs derived from membrane disrupting antimicrobial peptides (AMP), viz. LL-37, melittin, and bombolitin V, with glutamic acid substituting for all basic residues. These analogs are pH-sensitive and cause negligible membrane permeabilization and insignificant cytotoxicity at pH7.4. However, at pH5.0, prevailing in endosomes, membrane binding and hemolysis of human erythrocytes become evident. We first condensed the emerald green fluorescent protein (emGFP) containing plasmid by protamine, yielding 115 nm diameter soluble nanoplexes. For coating of the nanoplex surface with a lipid bilayer we introduced a hydrophobic tether, stearyl-octa-arginine (SR8). The indicated peptides were dissolved in methanol and combined with lipid mixtures in chloroform, followed by drying at RT under a nitrogen flow. The dry residues were hydrated with nanoplexes in Hepes, pH7.4 yielding after a 30 min incubation at RT,rather monodisperse nanoparticles having an average diameter of 150-300 nm, measured by DLS and cryo-TEM. Studies with cell cultures showed the above peptides to yield expression levels comparable to those obtained using Lipofectamine 2000. However, unlike the polydisperse aggregates formed upon mixing Lipofectamine 2000 and plasmid, the procedure described yields soluble, and reasonably monodisperse nanoparticles, which can be expected to be suitable for gene delivery in vivo, using intravenous injection.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Endossomos/metabolismo , Meliteno/química , Nanopartículas/química , Peptídeos/química , Transfecção/métodos , Sequência de Aminoácidos , Animais , Eritrócitos/química , Eritrócitos/citologia , Expressão Gênica , Ácido Glutâmico/química , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hemólise , Humanos , Concentração de Íons de Hidrogênio , Lipídeos/química , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Nanopartículas/ultraestrutura , Oligopeptídeos/química , Tamanho da Partícula , Protaminas/química , Estearatos/química , Catelicidinas
17.
Transgenic Res ; 25(1): 1-17, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26433587

RESUMO

As part of an environmental risk assessment, the potential impact of genetically modified (GM) maize MON 87411 on non-target arthropods (NTAs) was evaluated in the field. MON 87411 confers resistance to corn rootworm (CRW; Diabrotica spp.) by expressing an insecticidal double-stranded RNA (dsRNA) transcript and the Cry3Bb1 protein and tolerance to the herbicide glyphosate by producing the CP4 EPSPS protein. Field trials were conducted at 14 sites providing high geographic and environmental diversity within maize production areas from three geographic regions including the U.S., Argentina, and Brazil. MON 87411, the conventional control, and four commercial conventional reference hybrids were evaluated for NTA abundance and damage. Twenty arthropod taxa met minimum abundance criteria for valid statistical analysis. Nine of these taxa occurred in at least two of the three regions and in at least four sites across regions. These nine taxa included: aphid, predatory earwig, lacewing, ladybird beetle, leafhopper, minute pirate bug, parasitic wasp, sap beetle, and spider. In addition to wide regional distribution, these taxa encompass the ecological functions of herbivores, predators and parasitoids in maize agro-ecosystems. Thus, the nine arthropods may serve as representative taxa of maize agro-ecosystems, and thereby support that analysis of relevant data generated in one region can be transportable for the risk assessment of the same or similar GM crop products in another region. Across the 20 taxa analyzed, no statistically significant differences in abundance were detected between MON 87411 and the conventional control for 123 of the 128 individual-site comparisons (96.1%). For the nine widely distributed taxa, no statistically significant differences in abundance were detected between MON 87411 and the conventional control. Furthermore, no statistically significant differences were detected between MON 87411 and the conventional control for 53 out of 56 individual-site comparisons (94.6 %) of NTA pest damage to the crop. In each case where a significant difference was observed in arthropod abundance or damage, the mean value for MON 87411 was within the reference range and/or the difference was not consistently observed across collection methods and/or sites. Thus, the differences were not representative of an adverse effect unfamiliar to maize and/or were not indicative of a consistent plant response associated with the GM traits. Results from this study support a conclusion of no adverse environmental impact of MON 87411 on NTAs compared to conventional maize and demonstrate the utility of relevant transportable data across regions for the ERA of GM crops.


Assuntos
Artrópodes/fisiologia , Plantas Geneticamente Modificadas , Medição de Risco/métodos , Zea mays/genética , Animais , Argentina , Bacillus thuringiensis/genética , Brasil , Produtos Agrícolas , Ecossistema , Meio Ambiente , Glicina/análogos & derivados , Glicina/farmacologia , Inseticidas/farmacologia , Densidade Demográfica , RNA de Cadeia Dupla , Estados Unidos , Glifosato
18.
Pharm Biol ; 54(11): 2597-2605, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27232056

RESUMO

CONTEXT: An ethnobotanical survey of Cordia rothii Roem. & Schult. (Boraginaceae) reveals it as a medicinal plant. OBJECTIVE: Antimicrobial and antioxidant potential evaluation and identification of chemical constituents via GC-MS of C. rothii roots fractions. To the best of our knowledge, this is the first systematic investigation of the roots exploiting GC-MS. MATERIALS AND METHODS: Extraction and fractionation of C. rothii roots furnished various fractions using solvents of varying polarity, i.e., n-hexane, chloroform, ethyl acetate, acetone and methanol. In vitro antimicrobial and antioxidant screening was performed using disk diffusion and DPPH methods, respectively. MIC of active fractions was also determined using disk diffusion method. GC-MS was used to identify constituents which may be responsible for these activities. RESULTS: Among various fractions from C. rothii roots, fraction KA-C showed strong antibacterial activity against 17 microorganisms tested, with MIC ranging from 250-31.25 µg/mL. Fractions KA-A, KM and KM-A exhibited significant antioxidant potential with EC50 46.875 µg/mL, while fractions KEA-PE, KM-PE and KM-M were good with EC50 93.750 µg/mL. Forty-five phytochemicals were identified in GC-MS studies including eight hydrocarbons, six free fatty acids, 11 fatty acids esters, two phenylpropanoids, four aromatics, four terpenoid quinones/hydroquinones, three triterpenes, four phytosterols, two hexose metabolites and a DNA base. Of these, 32 constituents have been reported for the first time from C. rothii, 24 from genus Cordia and 15 from Boraginaceae. DISCUSSION AND CONCLUSION: Strong antibacterial and antioxidant potential of C. rothii roots may be due to the contribution of phytoconstituents identified through GC-MS studies.


Assuntos
Anti-Infecciosos/análise , Antioxidantes/análise , Cordia/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Extratos Vegetais/análise , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Raízes de Plantas/química
19.
Pak J Med Sci ; 32(2): 423-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27182253

RESUMO

BACKGROUND & OBJECTIVE: Neck and shoulder are the most susceptible areas for developing musculoskeletal symptoms among computer users. The modifiable risk factors for these work related musculoskeletal disorders include physical office environment and psychosocial work related factors. Computer workstation layout had been shown to be an important physical aspect of work environment that influences the upper quadrant symptoms. Our objective was to find the frequency of neck and shoulder pain and use of adjustable computer workstation among bankers of Islamabad/Rawalpindi/Multan. METHODS: A cross sectional study was conducted and 120 participants were questioned. Purposive sampling technique was used in this study. Maastricht Upper Extremity Questionnaire (MUEQ) was remodeled and important questions were extracted from its detailed version. The tool was then validated by taking expert opinion. Frequencies and percentages were calculated for categorical variables. RESULTS: Pain in the neck during working hours was experienced by 71.67% of the respondents and 48.33% of the participants had experienced shoulder pain during working hours. Adjustable keyboards were used by 16.67% of respondents. Back care material was used by 40% bankers. Adjustable chairs were used by 95.83% of the participants. Only 3% of the bankers did not have chairs with adjustable heights. Chairs with adjustable armrests were used by 25% bankers. CONCLUSION: Neck and shoulder pain are common occurrences among bankers. Most of the components of workstations of bankers were adjustable but some of them still need attention.

20.
Cancer Invest ; 32(4): 150-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24605899

RESUMO

INTRODUCTION: We conducted a presurgical trial to assess the tissue-related effects of metformin in overweight/obese breast cancer (BC) patients. METHODS: Metformin 1,500 mg daily was administered to 35 nondiabetics with stage 0-III BC, body mass index (BMI) ≥ 25 kg/m(2). The primary endpoint was tumor proliferation change (i.e., ki-67). Tumor proliferation change was compared to untreated historical controls, matched by age, BMI, and stage. RESULTS: There was no reduction in ln(ki-67) after metformin (p = .98) or compared to controls (p = .47). There was a significant reduction in BMI, cholesterol, and leptin. CONCLUSION: Despite no proliferation changes, we observed reductions in other relevant biomarkers.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Metformina/administração & dosagem , Obesidade/tratamento farmacológico , Sobrepeso/tratamento farmacológico , Idoso , Biomarcadores Tumorais/sangue , Índice de Massa Corporal , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Quimioterapia Adjuvante , Colesterol/sangue , Esquema de Medicação , Feminino , Humanos , Leptina/sangue , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Cidade de Nova Iorque , Obesidade/sangue , Obesidade/diagnóstico , Sobrepeso/sangue , Sobrepeso/diagnóstico , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA