Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 252(Pt 3): 119024, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692419

RESUMO

Environmental pollution has been increasing since last decade due to increasing industrialisation and urbanisation. Various kinds ofenvironmental pollutants including carbon dioxide (CO2), dyes, pharmaceuticals, phenols, heavy metals along with many organic and inorganic species have been discovered in the various environmental compartments which possess harmful impacts tox human health, wildlife, and ecosystems. Thus, various efforts have been made through regulations, technological advancements, and public awareness campaigns to reduce the impact of the pollution. However, finding suitable alternatives to mitigate their impacts remained a challenge. Metal-organic frameworks (MOFs) are one of the advanced materials with unique features such as high porosity and stability which exhibit versatile applications in environmental remediation. Their composites with titanium oxide nanoparticles (TiO2) have been discovered to offer potential feature such as light harvesting capacity and catalytic activity. The composite integration and properties have been confirmed through characterization using surface area analysis, scanning electron/transmission electron microscopy, atomic force microscopy, fourier transformed infrared spectroscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy, thermogravimetric analysis, and others. Thus, this work rigorously discussed potential applications of the MOF@TiO2 nanomaterials for the CO2 capture and effective utilization in methanol, ethanol, acetone, acetaldehyde, and other useful products that served as fuel to various industrial processes. Additionally, the work highlights the effective performance of the materials towards photocatalytic degradation of both organic and inorganic pollutants with indepth mechanistic insights. The article will offer significant contribution for the development of sustainable and efficient technologies for the environmental monitoring and pollution mitigation.


Assuntos
Dióxido de Carbono , Estruturas Metalorgânicas , Titânio , Titânio/química , Dióxido de Carbono/química , Dióxido de Carbono/análise , Estruturas Metalorgânicas/química , Águas Residuárias/química , Recuperação e Remediação Ambiental/métodos , Nanopartículas/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise
2.
Electrophoresis ; 41(13-14): 1206-1224, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32347555

RESUMO

Superparamagnetic nanoparticles are attracting significant attention. Therefore, being explored in microsystems for a wide range of applications. Typical examples include lab-on-a-chip and microfluidics for synthesis, detection, separation, and transportation of different bioanalytes, such as biomolecules, cells, and viruses to develop portable, sensitive, and cost-effective biosensing systems. Particularly, microfluidic systems incorporated with magnetic nanoparticles and, in combination with magnetoresistive sensors, shift diagnostic and analytical methods to a microscale level. In this context, nanotechnology enables the miniaturization and integration of a variety of analytical functions in a single chip for manipulation, detection, and recognition of bioanalytes reliably and flexibly. In consideration of the above, recent development and benefits are elaborated herein to discuss the role of magnetic nanoparticles inside the microchannels to design highly efficient disposable point-of-care applications from transportation to the detection of bioanalytes.


Assuntos
Técnicas Biossensoriais , Nanopartículas de Magnetita , Técnicas Analíticas Microfluídicas , Dispositivos Lab-On-A-Chip , Nanotecnologia , Sistemas Automatizados de Assistência Junto ao Leito
3.
J Microencapsul ; 37(8): 595-608, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32981415

RESUMO

AIM: This study aimed to utilise the proficient function of diacerein (DCR) and anti-inflammatory polymers to develop sustained release nanoencapsulated emulgel for potential use in osteoarthritis (OA). METHODS: Chitosan (CHS) and chondroitin sulphate (CS) were employed as natural anti-inflammatory polymers to encapsulate nanoformulation of DCR. Optimised nanoformulation was prepared and characterised by investigating impact of polymers and surfactant on particle size, PDI, and encapsulation efficiency (EE). Afterwards, nanoemulgel of optimised DCR-NPs was formulated and evaluated for transdermal application. RESULTS: Optimised nanoformulation depicted spherical shape with particle size of 320 nm having PDI and EE of 0.3 ± 0.07 and 82 ± 4% (w/w), respectively. DCR-nanoemulgel depicts sustained action of drug up to 96 h with enhanced permeation activity and non-irritancy index. CONCLUSIONS: The elaborated nanoemulgel sustained release of drug having superior penetration properties with provision of enhanced therapeutic effect owing to the presence of CHS, CS, and Argan oil possessing indelible anti-inflammatory attributes.


Assuntos
Antraquinonas/química , Biomimética , Quitosana/química , Nanopartículas/química , Osteoartrite/tratamento farmacológico , Polímeros/química , Administração Oral , Animais , Anti-Inflamatórios/química , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Géis , Técnicas In Vitro , Masculino , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Pele/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Viscosidade
4.
Polymers (Basel) ; 15(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37447513

RESUMO

Novel ultrafiltration (UF) polymer membranes were prepared to enhance the antifouling features and filtration performance. Several ultrafiltration polymer membranes were prepared by incorporating different concentrations of water-soluble cationic poly [2-(dimethyl amino) ethyl methacrylate] (PDMAEMA) into a homogenous casting solution of polyethersulfone (PES). After adding PDMAEMA, the effects on morphology, hydrophilicity, thermal stability, mechanical strength, antifouling characteristics, and filtration performance of these altered blended membranes were investigated. It was observed that increasing the quantity of PDMAEMA in PES membranes in turn enhanced surface energy, hydrophilicity, and porosity of the membranes. These new modified PES membranes, after the addition of PDMAEMA, showed better filtration performance by having increased water flux and a higher flux recovery ratio (FRR%) when compared with neat PES membranes. For the PES/PDMAEMA membrane, pure water flux with 3.0 wt.% PDMAEMA and 0.2 MPa pressure was observed as (330.39 L·m-2·h-1), which is much higher than that of the neat PES membrane with the value of (163.158 L·m-2·h-1) under the same conditions. Furthermore, the inclusion of PDMAEMA enhanced the antifouling capabilities of PES membranes. The total fouling ratio (TFR) of the fabricated PES/PDMAEMA membranes with 3.0 wt.% PDMAEMA at 0.2 MPa applied pressure was 36 percent, compared to 64.9 percent for PES membranes.

5.
Sci Rep ; 13(1): 4572, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941313

RESUMO

This article presents that acrylate copolymers are the potential candidate against the adsorption of bovine serum albumin (BSA). A series of copolymers poly(methyl methacrylate) (pMMA), poly(3-sulfopropyl methacrylate-co-methyl methacrylate) p(SPMA-co-MMA), and poly(dimethylaminoethyl methacrylate-co-methyl methacrylate) p(DMAEMA-co-MMA) were synthesized via free radical polymerization. These amphiphilic copolymers are thermally stable with a glass transition temperature (Tg) 50-120 °C and observed the impact of surface charge on amphiphilic copolymers to control interactions with the bovine serum albumin (BSA). These copolymers pMD1 and pMS1 have surface charges, - 56.6 and - 72.6 mV at pH 7.4 in PBS buffer solution that controls the adsorption capacity of bovine serum albumin (BSA) on polymers surface. Atomic force microscopy (AFM) analysis showed minimum roughness of 0.324 nm and 0.474 nm for pMS1 and pMD1. Kinetic studies for BSA adsorption on these amphiphilic copolymers showed the best fitting of the pseudo-first-order model that showed physisorption and attained at 25 °C and pH 7.4 within 24 h.


Assuntos
Polímeros , Soroalbumina Bovina , Cinética , Polimetil Metacrilato , Acrilatos , Metacrilatos
6.
Polymers (Basel) ; 14(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35890691

RESUMO

Recently, dual-mode imaging systems merging magnetic resonance imaging (MRI) and ultrasound (US) have been developed. Designing a dual-mode contrast agent is complex due to different mechanisms of enhancement. Herein, we describe novel phase change nanodroplets (PCNDs) with perfluoropentane encapsulated in a pre-polyglycerol sebacate (pre-PGS) shell loaded with polyethylene glycol (PEG)-coated iron oxide nanoparticles as having a dual-mode contrast agent effect. Iron oxide nanoparticles were prepared via the chemical co-precipitation method and PCNDs were prepared via the solvent displacement technique. PCNDs showed excellent enhancement in the in vitro US much more than Sonovue® microbubbles. Furthermore, they caused a susceptibility effect resulting in a reduction of signal intensity on MRI. An increase in the concentration of nanoparticles caused an increase in the MR contrast effect but a reduction in US intensity. The concentration of nanoparticles in a shell of PCNDs was optimized to obtain a dual-mode contrast effect. Biocompatibility, hemocompatibility, and immunogenicity assays showed that PCNDs were safe and non-immunogenic. Another finding was the dual-mode potential of unloaded PCNDs as T1 MR and US contrast agents. Results suggest the excellent potential of these PCNDs for use as dual-mode contrast agents for both MRI and US.

7.
Polymers (Basel) ; 14(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35808585

RESUMO

The fouling of surfaces such as textiles is a major health challenge, and there is a continuous effort to develop materials and processes to overcome it. In consideration of this, this study regards the development of antifouling functional nanoencapsulated finishing for the cotton textile fabric by employing a layer-by-layer dip coating technique. Antifouling textile finishing was formulated by inducing the nanoencapsulation of the antifouling functional group inside the hydrophobic polymeric shell. Cotton fabric was taken as a substrate to incorporate antibacterial functionality by alternatively fabricating multilayers of antifouling polymeric formulation (APF) and polyelectrolyte solution. The surface morphology of nanoencapsulated finished textile fabric was characterized through scanning electron microscopy to confirm the uniform distribution of nanoparticles on the cotton textile fabric. Optical profilometry and atomic force microscopy studies indicated increased surface roughness in the coated textile substrate as compared to the uncoated textile. The surface thickness of the fabricated textile increased with the number of deposited bilayers on the textile substrate. Surface hydrophobicity increased with number of coating bilayers with θ values of x for single layer, up to y for 20 bilayers. The antibacterial activity of the uncoated and layer-by-layer coated finished textile was also evaluated. It was significant and exhibited a significant zone of inhibition against microbial strains Gram-positive S. aureus and Gram-negative E. coli. The bilayer coating exhibited water repellency, hydrophobicity, and antibacterial activity. Thus, the fabricated textile could be highly useful for many industrial and biomedical applications.

8.
Polymers (Basel) ; 14(11)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35683936

RESUMO

Membrane fouling is a continued critical challenge for ultrafiltration membranes performance. In this work, polyether sulfone (PES) ultrafiltration (UF) membranes were fabricated via phase-inversion method by incorporating varying concentrations of APTMS modified activated carbon (mAC). The mAC was thoroughly characterized and the fabricated membranes were studied for their surface morphology, functional groups, contact angle, water retention, swelling (%) porosity, and water flux. The hydrophilicity of mAC membranes also resulted in lower contact angle and higher values of porosity, roughness, water retention as well as water flux. Also, the membranes incorporated with mAC exhibited antibacterial performance against model test strains of gram-negative Ecoil and gram-positive S. aureus. The antifouling studies based on bovine serum albumin protein (BSA) solution filtration showed that mAC membranes have better BSA flux. The higher flux and antifouling characteristics of the mAC membranes were attributed to the electrostatic repulsion of the BSA protein from the unique functional properties of AC and network structure of APTMS. The novel mAC ultrafiltration membranes developed and studied in present work can provide higher flux and less BSA rejection thus can find antifouling applications for the isolation and concentration of proteins and macromolecules.

9.
Polymers (Basel) ; 14(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080621

RESUMO

In this research work, polymer blends of poly-lactic acid (PLA)/ethylene vinyl acetate (EVA) were prepared as the drug carrier materials for a bi-layer drug-loaded coating film for coronary stents. Different optimum compositions of blends were prepared by using an intense mixer. Then, the blends were hot-pressed and later cold-pressed to prepare for films of different thickness. The changes in weight, surface analysis and biodegradability with increasing time were studied using Scanning electron microscopy (SEM), weight loss and biodegradability tests. The mechanical and thermal properties of drug-loaded films were studied through universal testing machine (UTM) and thermo-gravimetric analysis (TGA). The effects of PLA, EVA and drug contents on in-vitro drug contents were investigated through the Ultraviolet-Visible Spectroscopy (UV-VIS) chemical analysis technique. The results obtained clearly showed that the addition of PLA promoted the unleashing of the drug whereas the addition of EVA nearly did not have the same affect. The mechanical properties of these various films can be tuned by adjusting the contents of blend parts. The factors affecting the unleashing of the drug became a serious matter of concern in evaluating the performance of bio-resorbable drug eluting stents. As a result, today's chemical blends may be useful drug carrier materials for drug-loaded tube coatings capable delivering purgative drug in an incredibly tunable and regulated manner.

10.
Polymers (Basel) ; 13(2)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435345

RESUMO

Amphiphilic copolymers are recognized as important biomaterials and used as antibacterial agents due to their effective inhibition of bacterial growth. In current study, the amphiphilic copolymers of P(DMAEMA-co-MMA) were synthesized using free radical polymerization by varying the concentrations of hydrophilic monomer 2-dimethylamino ethylmethacrylate (DMAEMA) and hydrophobic monomer methyl methacrylate (MMA) having PDI value of 1.65-1.93. The DMAEMA monomer, through ternary amine with antibacterial property optimized copolymers, P(DMAEMA-co-MMA), compositions to control biofilm adhesion. Antibacterial activity of synthesized copolymers was elucidated against Gram-positive Staphylococcus aureus (ATCC 6538) and Gram-negative Escherchia coli (ATCC 8739) by disk diffusion method, and zones of inhibition were measured. The desired composition that was PDM1 copolymer had shown good zones of inhibition i.e., 19 ± 0.33 mm and 20 ± 0.33 mm for E. coli and S. aureus respectively. The PDM1 and PDM2 have exhibited significant control over bacterial biofilm adhesion as tested by six well plate method. SEM study of bacterial biofilm formation has illustrated that these copolymers act in a similar fashion like cationic biocide. These compositions viz. PDM1 and PDM2, may be useful in development of bioreactors, sensors, surgical equipment and drug delivery devices.

11.
Membranes (Basel) ; 11(6)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207512

RESUMO

Mixed-matrix nanocomposite (PES/CA/PVP) membranes were fabricated for water desalination by incorporating varying amount of titanium dioxide nanoparticles (TiO2 NPs) ranging from 0 and 2 wt. %. Efficient dispersion of nanoparticles within polymeric membranes was achieved using the chemical precipitation method for uniform surface generation, and an asymmetric morphology was achieved via phase inversion method. Finally, membranes were characterized by Fourier Transform Infrared (FTIR) spectroscopy, Thermo Gravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), porosity and contact angle analysis. FTIR confirmed chemical composition of membranes in terms of polymers (PES/CA/PVP) and TiO2. TGA analysis confirmed an increase in thermal stability of membranes with the increase of TiO2 nanoparticles loading. The addition of TiO2 nanoparticles also resulted in an increase in porous structures due to an increase in mean pore size, as shown by SEM results. An increase in the hydrophilicity of the membranes was observed by increasing the concentration of TiO2 nanoparticles. The present study investigated pristine and mixed-matrix nanocomposite NF membrane performance while filtering a NaCl salt solution at varying concentration range (from 1 to 4 g/Lit 6 bar). The prepared membranes demonstrated significant improvement in water permeability and hydrophilicity. Further, to optimize the water flux and salt rejection, the concentration of Polyvinylpyrrolidone (PVP) was optimized along with TiO2 nanoparticles. Both the water flux and salt rejection of the fabricated membranes were observed to increase with an increase inTiO2 nanoparticles to 2 wt. % loading with optimized PVP concentration, which demonstrated the improved desalination performance of resultant membranes.

12.
Polymers (Basel) ; 13(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209144

RESUMO

The objective of the present study was to achieve the successful encapsulation of a therapeutic agent to achieve antifouling functionality regarding biomedical applications. Considering nanotechnology, drug-loaded polycaprolactone (PCL)-based nanoparticles were prepared using a nano-precipitation technique by optimizing various process parameters. The resultant nano-formulations were investigated for in vitro drug release and antifouling applications. The prepared particles were characterized in terms of surface morphology and surface properties. Optimized blank and drug-loaded nanoparticles had an average size of 200 nm and 216 nm, respectively, with associated charges of -16.8 mV and -11.2 mV. Studies of the in vitro release of drug were carried out, which showed sustained release at two different pH, 5.5 and 7.4 Antifouling activity was observed against two bacterial strains, Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The zone of inhibition of the optimized polymeric drug-loaded nanoparticle F-25 against both strains were compared with the pure drug. The gradual pH-responsive release of antibiotics from the biodegradable polymeric nanoparticles could significantly increase the efficiency and pharmacokinetics of the drug as compared to the pure drug. The acquired data significantly noted that the resultant nano-encapsulation of antifouling functionality could be a promising candidate for topical drug delivery systems and skin applications.

13.
Membranes (Basel) ; 11(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803777

RESUMO

A commercial thin film composite (TFC) polyamide (PA) reverse osmosis membrane was grafted with 3-sulfopropyl methacrylate potassium (SPMK) to produce PA-g-SPMK by atom transfer radical polymerization (ATRP). The grafting of PA was done at varied concentrations of SPMK, and its effect on the surface composition and morphology was studied by Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), optical profilometry, and contact angle analysis. The grafting of hydrophilic ionically charged PSPMK polymer brushes having acrylate and sulfonate groups resulted in enhanced hydrophilicity rendering a reduction of contact angle from 58° of pristine membrane sample labeled as MH0 to 10° for a modified membrane sample labeled as MH3. Due to the increased hydrophilicity, the flux rate rises from 57.1 L m-2 h-1 to 71.2 L m-2 h-1, and 99% resistance against microbial adhesion (Escherichia coli and Staphylococcus aureus) was obtained for MH3 after modification.

14.
Membranes (Basel) ; 11(11)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34832056

RESUMO

A rapid increase in population worldwide is giving rise to the severe problem of safe drinking water availability, necessitating the search for solutions that are effective and economical. For this purpose, membrane technology has shown a lot of promise but faces the challenge of fouling, leading to a reduction in its lifetime. In this study, ultrafiltration polyethersulfone membranes were synthesized in two different concentrations, 16% wt. and 20% wt., using the phase inversion method. Chitosan and activated carbon were incorporated as individual fillers and then as composites in both the concentrations. A novel thiolated chitosan/activated carbon composite was introduced into a polyethersulfone membrane matrix. The membranes were then analyzed using Attenuated Total Reflection-Fourier-Transform Infrared spectroscopy(ATR-FTIR), Scanning Electron Microscopy (SEM), optical profilometry, gravimetric analysis, water retention, mechanical testing and contact angle. For membranes with the novel thiolated chitosan/activated carbon composite, Scanning Electron Microscopy micrographs showed better channels, indicating a better permeability possibility, reiterated by the flux rate results. The flux rate and bovine serum albumin flux were also assessed, and the results showed an increase from 105 L/m2h to 114 L/m2h for water flux and the antifouling determined by bovine serum albumin flux increased from 23 L/m2h to 51 L/m2h. The increase in values of water uptake from 22.84% to 76.5% and decrease in contact angle from 64.5 to 55.7 showed a significant increase in the hydrophilic character of the membrane.

15.
Polymers (Basel) ; 13(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562477

RESUMO

This study is based upon the functionalization of polypropylene (PP) by radical polymerization to optimize its properties by influencing its molecular weight. Grafting of PP was done at different concentrations of maleic anhydride (MAH) and benzoyl peroxide (BPO). The effect on viscosity during and after the reaction was studied by torque rheometer and melt flow index. Results showed that a higher concentration of BPO led to excessive side-chain reactions. At a high percentage of grafting, lower molecular weight product was produced, which was analyzed by viscosity change during and after the reaction. Percentage crystallinity increased by grafting due to the shorter chains, which consequently led to an improvement in the chain's packing. Prepared Maleic anhydride grafted polypropylene (MAH-g-PP) enhanced interactions in PP-PET blends caused a partially homogeneous blend with less voids.

16.
Ann Pharmacother ; 44(5): 918-21, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20354160

RESUMO

OBJECTIVE: To report a case in which daptomycin-nonsusceptible methicillin-resistant Staphylococcus aureus (MRSA) bacteremia was successfully treated with the addition of rifampin to daptomycin. CASE SUMMARY: An 84-year-old male presented with fever and chills following cystoscopy. After culturing was conducted, the patient received single doses of vancomycin and gentamicin and then continued on vancomycin plus ceftazidime. Blood cultures grew MRSA, with vancomycin and daptomycin minimum inhibitory concentrations (MICs) of < or =1 microg/mL and 0.25 microg/mL, respectively. Vancomycin was continued, with trough concentrations maintained >15 microg/mL, but results of blood cultures remained positive. On day 10, therapy was switched to daptomycin 6 mg/kg/day, but culture results remained positive. On day 13, testing for vancomycin heteroresistance was negative, with the MIC unchanged. The vancomycin MIC remained unchanged on day 19, but the daptomycin MIC had increased to 2 microg/mL. Rifampin 300 mg orally twice daily was added on day 20; blood cultures obtained 2 days later were sterile. The patient was discharged to complete a 6-week course of antibiotics and was doing well 4 months following therapy. DISCUSSION: Analysis of MRSA isolates obtained on days 1 and 19 showed an increase in the daptomycin MIC from 0.25 to 2 microg/mL. Because intervening isolates were not available for susceptibility testing, it is not possible to associate this increase with exposure to either vancomycin or daptomycin. Although in vitro synergy was not seen in this case, addition of rifampin to daptomycin therapy resolved the bacteremia. CONCLUSIONS: In patients with persistent MRSA bacteremia, isolates should be retested for susceptibility to both daptomycin and vancomycin, including assessment for vancomycin heteroresistance. Addition of rifampin to daptomycin may be effective for persistent MRSA bacteremia, even if daptomycin MICs are elevated. Prospective studies are needed to define the role of combination therapy.


Assuntos
Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Daptomicina/uso terapêutico , Resistência a Meticilina/efeitos dos fármacos , Rifampina/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Idoso de 80 Anos ou mais , Antibacterianos/administração & dosagem , Bacteriemia/microbiologia , Bacteriemia/urina , Daptomicina/administração & dosagem , Quimioterapia Combinada , Humanos , Masculino , Testes de Sensibilidade Microbiana , Rifampina/administração & dosagem , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/urina , Staphylococcus aureus/isolamento & purificação , Resultado do Tratamento , Urina/microbiologia
17.
Polymers (Basel) ; 12(9)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957488

RESUMO

Magnetic polymer colloids comprising of magnetite (Fe3O4) nanoparticles and Eudragit E100 were employed to fabricate thin film gradients and were investigated for in-vitro magnetic resonance imaging. Magnetic polymer colloids (MPC) and polyacrylic acid (PAA) with stimuli-responsive cationic and anionic functional groups respectively facilitate the formation of thin film gradients via layer by layer technique. The characteristics of films were controlled by changing the pH and level of the adsorbing solutions that lead to the development of gradient films having 5.5, 10.5 and 15.5 bilayers. Optical microscopy, scanning electron microscopy and magnetic force microscopy was carried out to determine the surface coverage of films. Surface wettability demonstrated the hydrophilicity of adsorbed colloids. The developed thin-film gradients were explored for in vitro magnetic resonance imaging that offers a point of care lab-on-chip as a dip-stick approach for ultrasensitive in-vitro molecular diagnosis of biological fluids.

18.
Nanomaterials (Basel) ; 10(6)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545473

RESUMO

Fungal infections in immune-compromised patients are an important cause of mortality and morbidity. Amphotericin B (Amp B) is considered a powerful fungicidal drug but its clinical usage has certain limitations when administered intravenously due to its toxicity and poor solubility. In consideration of such challenges, in cutaneous leishmaniasis, the topical application of Amp B can be a safer option in many aspects. Thus, herein, biopolymer of polycaprolactone (PCL) nanoparticles (NPs) were developed with the loading of Amp B by nanoprecipitation for the treatment of topical leishmanial infections. Various parameters, such as concentration of PCL and surfactant Poloxamer 407, were varied in order to optimize the formation of nanoparticles for the loading of Amp B. The optimized formulation exhibited a mean hydrodynamic particle size of 183 nm with a spherical morphology and an encapsulation efficiency of 85%. The applications of various kinetic models reveal that drug release from nanoformulation follows Korsmeyer-Peppas kinetics and has a high diffusion exponent at a physiological pH of 7.4 as well a skin relevant pH = 5.5. The activity of the prepared nanoparticles was also demonstrated in Leishmania infected macrophages. The measured IC50 of the prepared nanoparticle formulation was observed to be significantly lower when compared to control free Amp B and AmBisome® for both L. tropica KWH23 and L. donovani amastigotes in order to demonstrate maximum parasite inhibition. The prepared topical nanoformulations are capable of providing novel options for the treatment of leishmaniasis, which can be possible after in vivo assays as well as the establishment of safety profiles.

19.
Nanomaterials (Basel) ; 10(11)2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147727

RESUMO

Aminodextran (AMD) coated magnetic cobalt ferrite nanoparticles are synthesized via electrostatic adsorption of aminodextran onto magnetic nanoparticles and their potential theranostic application is evaluated. The uncoated and aminodextran-coated nanoparticles are characterized to determine their hydrodynamic size, morphology, chemical composition, zeta potential and magnetization. The aminodextran containing cobalt ferrite nanoparticles of nanometer size are positively charged in the pH range from 3 to 9 and exhibit saturation magnetization of 50 emu/g. The magnetic resonance imaging (MRI) indicates capability for diagnostics and a reduction in intensity with an increase in nanoparticle amount. The hyperthermia capability of the prepared particles shows their potential to generate suitable local heat for therapeutic purposes. There is a rise of 7 °C and 9 °C at 327 kHz and 981 kHz respectively and specific absorption rates (SAR) of aminodextran-coated nanoparticles are calculated to be 259 W/g and 518 W/g at the given frequencies larger than uncoated nanoparticles (0.02 W/g). The development of novel aminodextran coated magnetic cobalt ferrite nanoparticles has significant potential to enable and improve personalized therapy regimens, targeted cancer therapies and ultimately to overcome the prevalence of nonessential and overdosing of healthy tissues and organs.

20.
Macromol Rapid Commun ; 30(23): 2002-21, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21638489

RESUMO

Chain transfer to polymer (CTP) in conventional free-radical polymerizations (FRPs) and controlled radical polymerizations (ATRP, RAFT and NMP) of n-butyl acrylate (BA) has been investigated using (13) C NMR measurements of branching in the poly(n-butyl acrylate) produced. The mol-% branches are reduced significantly in the controlled radical polymerizations as compared to conventional FRPs. Several possible explanations for this observation are discussed critically and all except one refuted. The observations are explained in terms of differences in the concentration of highly reactive short-chain radicals which can be expected to undergo both intra- and inter-molecular CTP at much higher rates than long-chain radicals. In conventional FRP, the distribution of radical concentrations is broad and there always is present a significant proportion of short-chain radicals, whereas in controlled radical polymerizations, the distribution is narrow with only a small proportion of short-chain radicals which diminishes as the living chains grow. Hence, irrespective of the type of control, controlled radical polymerizations give rise to lower levels of branching, when performed under otherwise similar conditions to conventional FRP. Similar observations are expected for other acrylates and monomers that undergo chain transfer to polymer during radical polymerization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA