Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35336570

RESUMO

Brain shift is an important obstacle to the application of image guidance during neurosurgical interventions. There has been a growing interest in intra-operative imaging to update the image-guided surgery systems. However, due to the innate limitations of the current imaging modalities, accurate brain shift compensation continues to be a challenging task. In this study, the application of intra-operative photoacoustic imaging and registration of the intra-operative photoacoustic with pre-operative MR images are proposed to compensate for brain deformation. Finding a satisfactory registration method is challenging due to the unpredictable nature of brain deformation. In this study, the co-sparse analysis model is proposed for photoacoustic-MR image registration, which can capture the interdependency of the two modalities. The proposed algorithm works based on the minimization of mapping transform via a pair of analysis operators that are learned by the alternating direction method of multipliers. The method was evaluated using an experimental phantom and ex vivo data obtained from a mouse brain. The results of the phantom data show about 63% improvement in target registration error in comparison with the commonly used normalized mutual information method. The results proved that intra-operative photoacoustic images could become a promising tool when the brain shift invalidates pre-operative MRI.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Algoritmos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Imageamento por Ressonância Magnética/métodos , Camundongos , Procedimentos Neurocirúrgicos/métodos , Imagens de Fantasmas
2.
NMR Biomed ; 30(2)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28052436

RESUMO

MRS is an analytical approach used for both quantitative and qualitative analysis of human body metabolites. The accurate and robust quantification capability of proton MRS (1 H-MRS) enables the accurate estimation of living tissue metabolite concentrations. However, such methods can be efficiently employed for quantification of metabolite concentrations only if the overlapping nature of metabolites, existing static field inhomogeneity and low signal-to-noise ratio (SNR) are taken into consideration. Representation of 1 H-MRS signals in the time-frequency domain enables us to handle the baseline and noise better. This is possible because the MRS signal of each metabolite is sparsely represented, with only a few peaks, in the frequency domain, but still along with specific time-domain features such as distinct decay constant associated with T2 relaxation rate. The baseline, however, has a smooth behavior in the frequency domain. In this study, we proposed a quantification method using continuous wavelet transformation of 1 H-MRS signals in combination with sparse representation of features in the time-frequency domain. Estimation of the sparse representations of MR spectra is performed according to the dictionaries constructed from metabolite profiles. Results on simulated and phantom data show that the proposed method is able to quantify the concentration of metabolites in 1 H-MRS signals with high accuracy and robustness. This is achieved for both low SNR (5 dB) and low signal-to-baseline ratio (-5 dB) regimes.


Assuntos
Algoritmos , Encéfalo/metabolismo , Imagem Molecular/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Encéfalo/anatomia & histologia , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual
3.
Diagnostics (Basel) ; 14(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39001209

RESUMO

During neurosurgical procedures, the neuro-navigation system's accuracy is affected by the brain shift phenomenon. One popular strategy is to compensate for brain shift using intraoperative ultrasound (iUS) registration with pre-operative magnetic resonance (MR) scans. This requires a satisfactory multimodal image registration method, which is challenging due to the low image quality of ultrasound and the unpredictable nature of brain deformation during surgery. In this paper, we propose an automatic unsupervised end-to-end MR-iUS registration approach named the Dual Discriminator Bayesian Generative Adversarial Network (D2BGAN). The proposed network consists of two discriminators and a generator optimized by a Bayesian loss function to improve the functionality of the generator, and we add a mutual information loss function to the discriminator for similarity measurements. Extensive validation was performed on the RESECT and BITE datasets, where the mean target registration error (mTRE) of MR-iUS registration using D2BGAN was determined to be 0.75 ± 0.3 mm. The D2BGAN illustrated a clear advantage by achieving an 85% improvement in the mTRE over the initial error. Moreover, the results confirmed that the proposed Bayesian loss function, rather than the typical loss function, improved the accuracy of MR-iUS registration by 23%. The improvement in registration accuracy was further enhanced by the preservation of the intensity and anatomical information of the input images.

4.
Int J Comput Assist Radiol Surg ; 18(8): 1373-1382, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36745339

RESUMO

PURPOSE: Accurate needle placement into the target point is critical for ultrasound interventions like biopsies and epidural injections. However, aligning the needle to the thin plane of the transducer is a challenging issue as it leads to the decay of visibility by the naked eye. Therefore, we have developed a CNN-based framework to track the needle using the spatiotemporal features of the speckle dynamics. METHODS: There are three key techniques to optimize the network for our application. First, we used Gunnar-Farneback (GF) as a traditional motion field estimation technique to augment the model input with the spatiotemporal features extracted from the stack of consecutive frames. We also designed an efficient network based on the state-of-the-art Yolo framework (nYolo). Lastly, the Assisted Excitation (AE) module was added at the neck of the network to handle the imbalance problem. RESULTS: Fourteen freehand ultrasound sequences were collected by inserting an injection needle steeply into the Ultrasound Compatible Lumbar Epidural Simulator and Femoral Vascular Access Ezono test phantoms. We divided the dataset into two sub-categories. In the second category, in which the situation is more challenging and the needle is totally invisible, the angle and tip localization error were 2.43 ± 1.14° and 2.3 ± 1.76 mm using Yolov3+GF+AE and 2.08 ± 1.18° and 2.12 ± 1.43 mm using nYolo+GF+AE. CONCLUSION: The proposed method has the potential to track the needle in a more reliable operation compared to other state-of-the-art methods and can accurately localize it in 2D B-mode US images in real time, allowing it to be used in current ultrasound intervention procedures.


Assuntos
Agulhas , Redes Neurais de Computação , Humanos , Ultrassonografia/métodos , Biópsia , Imagens de Fantasmas , Análise Espaço-Temporal
5.
Med Biol Eng Comput ; 61(3): 699-708, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36585561

RESUMO

Electromagnetic navigation bronchoscopy (ENB) uses electromagnetic positioning technology to guide the bronchoscope to accurately and quickly reach the lesion along the planned path. However, enormous data in high-resolution lung computed tomography (CT) and the complex structure of multilevel branching bronchial tree make fast path search challenging for path planning. We propose a coordinate-based fast lightweight path search (CPS) algorithm for ENB. First, the centerline is extracted from the bronchial tree by applying topological thinning. Then, Euclidean-distance-based coordinate search is applied. The centerline points are represented by their coordinates, and adjacent points along the navigation path are selected considering the shortest Euclidean distance to the target on the centerline nearest the lesion. From the top of the trachea centerline, search is repeated until reaching the target. In 50 high-resolution lung CT images acquired from five scanners, the CPS algorithm achieves accuracy, average search time, and average memory consumption of 100%, 88.5 ms, and 166.0 MB, respectively, reducing search time by 74.3% and 73.1% and memory consumption by 83.3% and 83.0% compared with Dijkstra and A* algorithms, respectively. CPS algorithm is suitable for path search in multilevel branching bronchial tree navigation based on high-resolution lung CT images.


Assuntos
Broncoscopia , Neoplasias Pulmonares , Humanos , Broncoscopia/métodos , Neoplasias Pulmonares/patologia , Pulmão/patologia , Fenômenos Eletromagnéticos , Algoritmos
6.
Australas Phys Eng Sci Med ; 35(1): 31-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22131095

RESUMO

Recently, Ultra-wide band signals have become attractive for their particular advantage of having high spatial resolution and good penetration ability which makes them suitable in medical applications. One of these applications is wireless detection of heart rate and respiration rate. Two hypothesis of static environment and fixed patient are considered in the method presented in previous literatures which are not valid for long term monitoring of ambulant patients. In this article, a new method to detect the respiration rate of a moving target is presented. The first algorithm is applied to the simulated and experimental data for detecting respiration rate of a fixed target. Then, the second algorithm is developed to detect respiration rate of a moving target. The proposed algorithm uses correlation for body movement cancellation, and then detects the respiration rate based on energy in frequency domain. The results of algorithm prove an accuracy of 98.4 and 97% in simulated and experimental data, respectively.


Assuntos
Algoritmos , Monitorização Ambulatorial/métodos , Testes de Função Respiratória/métodos , Taxa Respiratória/fisiologia , Tecnologia sem Fio/instrumentação , Simulação por Computador , Humanos , Movimento , Reconhecimento Automatizado de Padrão/métodos , Imagens de Fantasmas , Radar/instrumentação , Reprodutibilidade dos Testes , Mecânica Respiratória/fisiologia , Sensibilidade e Especificidade
7.
Comput Biol Med ; 148: 105917, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35985187

RESUMO

Glioma segmentation is an essential step in tumor identification and treatment planning. Glioma segmentation is a challenging task because it appears with blurred and irregular boundaries in a variety of shapes. In this paper, we propose an efficient and novel model for automatic glioma segmentation based on capsule neural networks. We improved the architecture and training of the SegCaps model, the first capsule-based segmentation network. The proposed architecture is improved by introducing dilation blocks in the primary capsule block to get deeper features while avoiding resolution reduction. The prediction layer of the network is also modified using one-dimensional convolution filters, enabling the network to not only maximize tumor existence likelihood but also regularize the capsule orientations within the tumor. Our main contribution, however, is to introduce an enhanced curriculum-based training algorithm into the proposed SegCaps model. We adapt the curriculum learning for the model by suggesting a new pacing mechanism based on a roulette-wheel selection algorithm that enriches randomness in the network and prevents bias. A hybrid dice loss function is also employed, which is better adapted to the introduced curriculum-based training procedure. We evaluated the performance of improved SegCaps on the BraTS2020, a multimodal benchmark dataset for brain tumor segmentation. The experimental results confirmed that the improvements yield a top-performing yet memory-efficient deep capsule architecture. The proposed model outperformed the best-reported accuracies on the BraTS2020, achieving improved dice scores of 85.16% and 81.88% for tumor core and enhancing tumor segmentation, respectively. Using 90%, fewer parameters than the popular U-Net also confirmed the high memory efficiency of our proposed model.


Assuntos
Glioma , Processamento de Imagem Assistida por Computador , Currículo , Humanos , Imageamento por Ressonância Magnética , Redes Neurais de Computação
8.
J Biomed Phys Eng ; 12(6): 655-668, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36569560

RESUMO

Background: Pancreatic ductal adenocarcinoma (PDAC) is the most prevalent type of pancreas cancer with a high mortality rate and its staging is highly dependent on the extent of involvement between the tumor and surrounding vessels, facilitating treatment response assessment in PDAC. Objective: This study aims at detecting and visualizing the tumor region and the surrounding vessels in PDAC CT scan since, despite the tumors in other abdominal organs, clear detection of PDAC is highly difficult. Material and Methods: This retrospective study consists of three stages: 1) a patch-based algorithm for differentiation between tumor region and healthy tissue using multi-scale texture analysis along with L1-SVM (Support Vector Machine) classifier, 2) a voting-based approach, developed on a standard logistic function, to mitigate false detections, and 3) 3D visualization of the tumor and the surrounding vessels using ITK-SNAP software. Results: The results demonstrate that multi-scale texture analysis strikes a balance between recall and precision in tumor and healthy tissue differentiation with an overall accuracy of 0.78±0.12 and a sensitivity of 0.90±0.09 in PDAC. Conclusion: Multi-scale texture analysis using statistical and wavelet-based features along with L1-SVM can be employed to differentiate between healthy and pancreatic tissues. Besides, 3D visualization of the tumor region and surrounding vessels can facilitate the assessment of treatment response in PDAC. However, the 3D visualization software must be further developed for integrating with clinical applications.

9.
Sci Rep ; 12(1): 3092, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197542

RESUMO

Fully automated and volumetric segmentation of critical tumors may play a crucial role in diagnosis and surgical planning. One of the most challenging tumor segmentation tasks is localization of pancreatic ductal adenocarcinoma (PDAC). Exclusive application of conventional methods does not appear promising. Deep learning approaches has achieved great success in the computer aided diagnosis, especially in biomedical image segmentation. This paper introduces a framework based on convolutional neural network (CNN) for segmentation of PDAC mass and surrounding vessels in CT images by incorporating powerful classic features, as well. First, a 3D-CNN architecture is used to localize the pancreas region from the whole CT volume using 3D Local Binary Pattern (LBP) map of the original image. Segmentation of PDAC mass is subsequently performed using 2D attention U-Net and Texture Attention U-Net (TAU-Net). TAU-Net is introduced by fusion of dense Scale-Invariant Feature Transform (SIFT) and LBP descriptors into the attention U-Net. An ensemble model is then used to cumulate the advantages of both networks using a 3D-CNN. In addition, to reduce the effects of imbalanced data, a multi-objective loss function is proposed as a weighted combination of three classic losses including Generalized Dice Loss (GDL), Weighted Pixel-Wise Cross Entropy loss (WPCE) and boundary loss. Due to insufficient sample size for vessel segmentation, we used the above-mentioned pre-trained networks and fine-tuned them. Experimental results show that the proposed method improves the Dice score for PDAC mass segmentation in portal-venous phase by 7.52% compared to state-of-the-art methods in term of DSC. Besides, three dimensional visualization of the tumor and surrounding vessels can facilitate the evaluation of PDAC treatment response.


Assuntos
Carcinoma Ductal Pancreático/irrigação sanguínea , Carcinoma Ductal Pancreático/diagnóstico por imagem , Aprendizado Profundo , Diagnóstico por Computador/métodos , Imageamento Tridimensional/métodos , Redes Neurais de Computação , Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/diagnóstico por imagem , Humanos , Tomografia Computadorizada por Raios X/métodos
10.
Biomed Eng Online ; 10: 22, 2011 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-21443798

RESUMO

BACKGROUND: Electrocardiography (ECG) signal is a primary criterion for medical practitioners to diagnose heart diseases. The development of a reliable, accurate, non-invasive and robust method for arrhythmia detection could assists cardiologists in the study of patients with heart diseases. This paper provides a method for morphological heart arrhythmia detection which might have different shapes in one category and also different morphologies in relation to the patients. The distinctive property of this method in addition to accuracy is the robustness of that, in presence of Gaussian noise, time and amplitude shift. METHODS: In this work 2nd, 3rd and 4th order cumulants of the ECG beat are calculated and modeled by linear combinations of Hermitian basis functions. Then, the parameters of each cumulant model are used as feature vectors to classify five different ECG beats namely as Normal, PVC, APC, RBBB and LBBB using 1-Nearest Neighborhood (1-NN) classifier. Finally, after classifying each model, a final decision making rule apply to these specified classes and the type of ECG beat is defined. RESULTS: The experiment was applied for a set of ECG beats consist of 9367 samples in 5 different categories from MIT/BIH heart arrhythmia database. The specificity of 99.67% and the sensitivity of 98.66% in arrhythmia detection are achieved which indicates the power of the algorithm. Also, the accuracy of the system remained almost intact in the presence of Gaussian noise, time shift and amplitude shift of ECG signals. CONCLUSIONS: This paper presents a novel and robust methodology in morphological heart arrhythmia detection. The methodology based on the Hermite model of the Higher-Order Statistics (HOS). The ability of HOS in suppressing morphological variations of different class-specific arrhythmias and also reducing the effects of Gaussian noise, made HOS, suitable for detection morphological heart arrhythmias. The proposed method exploits these properties in conjunction with Hermitian model to perform an efficient and reliable classification approach to detect five morphological heart arrhythmias. And the time consumption of this method for each beat is less than the period of a normal beat.


Assuntos
Arritmias Cardíacas/diagnóstico , Eletrocardiografia/métodos , Modelos Estatísticos , Algoritmos , Bloqueio de Ramo/diagnóstico , Humanos , Sensibilidade e Especificidade , Complexos Ventriculares Prematuros/diagnóstico
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3053-3056, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891887

RESUMO

CT machines can be tuned in order to reduce the radiation dose used for imaging, yet reducing the radiation dose results in noisy images which are not suitable in clinical practice. In order for low dose CT to be used effectively in practice this issue must be addressed. Generative Adversarial Networks (GAN) have been used widely in computer vision research and have proven themselves as a powerful tool for producing images with high perceptual quality. In this work we use a cascade of two neural networks, the first is a Generative Adversarial Network and the second is a Deep Convolutional Neural Network. The first network generates a denoised sample which is then fine-tuned by the second network via residue learning. We show that our cascaded method outperforms related works and more effectively reconstructs fine structural details in low contrast regions of the image.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Redes Neurais de Computação
12.
Phys Med Biol ; 66(2): 025001, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33181494

RESUMO

Electromagnetic-based navigation bronchoscopy requires accurate and robust estimation of the bronchoscope position inside the bronchial tree. However, respiratory motion, coughing, patient movement, and airway deformation inflicted by bronchoscope significantly hinder the accuracy of intraoperative bronchoscopic localization. In this study, a real-time and automatic registration procedure was proposed to superimpose the current location of the bronchoscope to corresponding locations on a centerline extracted from bronchial computed tomography (CT) images. A centerline-guided Gaussian mixture model (CG-GMM) was introduced to register a bronchoscope's position concerning extracted centerlines. A GMM was fitted to bronchoscope positions where the orientation likelihood was chosen to assign the membership probabilities of the mixture model, which led to preserving the global and local structures. The problem was formulated and solved under the expectation maximization framework, where the feature correspondence and spatial transformation are estimated iteratively. Validation was performed on a dynamic phantom with four different respiratory motions and four human real bronchoscopy (RB) datasets. Results of the experiments conducted on the bronchial phantom showed that the average positional tracking error using the proposed approach was equal to 1.98 [Formula: see text] 0.98 mm that was reduced in comparison with independent electromagnetic tracking (EMT), iterative closest point (ICP), and coherent point drift (CPD) methods by 64%, 58%, and 53%, respectively. In the patient assessment part of the study, the average positional tracking error was 4.73 [Formula: see text] 4.76 mm and compared to ICP, and CPD methods showed 31.4% improvement of successfully tracked frames. Our approach introduces a novel method for real-time respiratory motion compensation that provides reliable guidance during bronchoscopic interventions and, thus could increase the diagnostic yield of transbronchial biopsy.


Assuntos
Broncoscópios , Movimento , Algoritmos , Brônquios/diagnóstico por imagem , Fenômenos Eletromagnéticos , Humanos , Distribuição Normal , Imagens de Fantasmas , Tomografia Computadorizada por Raios X
13.
Med Phys ; 37(12): 6166-77, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21302773

RESUMO

PURPOSE: The presence of metallic dental fillings is prevalent in head and neck PET/CT imaging and generates bright and dark streaking artifacts in reconstructed CT images. The resulting artifacts would propagate to the corresponding PET images following CT-based attenuation correction (CTAC). This would cause over- and/or underestimation of tracer uptake in corresponding regions thus leading to inaccurate quantification of tracer uptake. The purpose of this study is to improve our recently proposed metal artifact reduction (MAR) approach and to assess its performance in a clinical setting. METHODS: The proposed MAR algorithm is performed in the virtual sinogram space to overcome the challenges associated with manipulating raw CT data. The corresponding bins of the virtual sinogram affected by metallic objects are obtained by forward projection of segmented metallic objects in the original CT image. These bins are then substituted by weighted values of three estimates: the affected bins in the original sinogram, the bins in the corrected sinogram using spline interpolation, and the sinogram bins in the neighboring column of the sinogram matrix. The optimized weighting factors (alpha, beta, and gamma) were estimated using a genetic algorithm (GA). The optimized combination of weighting coefficients was obtained using the GA applied to 24 clinical CT data sets. The proposed MAR method was then applied to 12 clinical head and neck PET/CT data sets containing dental artifacts. Analysis of the results was performed using Bland and Altman plots and a method allowing analysis in the absence of gold standard called regression without truth (RWT). The proposed method was also compared to an image-based MAR method. RESULTS: Optimization of the weighting coefficients using the GA resulted in an optimum combination of parameters of alpha=0.26, beta=0.67, and gamma=0.07. According to Bland and Altman plots generated for both CT and PET images of the clinical data, the proposed MAR algorithm is efficient for reduction of streak artifacts in CT images and such reduce the over- and/or underestimation o tracer uptake. The RWT method also confirmed the effectiveness of the proposed MAR method. The obtained figures of merit revealed that attenuation corrected PET data corrected using CTAC after applying the MAR algorithm are more similar to the assumed gold standard. Comparison with the knowledge-based method revealed that the proposed method mainly corrects the artifactual regions without modifying the unaffected regions. The knowledge-based method globally modifies the images including those that do not include metallic artifacts. CONCLUSIONS: The proposed MAR algorithm improves the quality and quantitative accuracy of clinical head and neck PET/CT images and could be easily integrated in clinical setting.


Assuntos
Algoritmos , Artefatos , Restauração Dentária Permanente , Processamento de Imagem Assistida por Computador/métodos , Metais , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada por Raios X/métodos , Genética , Humanos
14.
Int J Med Robot ; 16(3): e2085, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31995264

RESUMO

BACKGROUND: Updating the statistical shape model (SSM) used in image guidance systems for the treatment of back pain using pre-op computed tomography (CT) and intra-op ultrasound (US) is challenging due to the scarce availability of pre-op images and the low resolution of the two imaging modalities. METHODS: A new approach is proposed here to update SSMs based on the sparse representation of the preoperative MRI images of patients as well as CT images, followed by displaying the injection needle and 3D tracking view of the patients' spine. RESULTS: The statistical analysis shows that updating the SSM using the patients' available MRI images (in more than 95% of the cases) instead of CT images (in less than 5%) will help maintain the required accuracy of needle injection based on the evaluation of injection in different parts of the phantom. CONCLUSION: The results show that using the proposed model helps reduce the dosage and processing time significantly while maintaining the precision required for the pain procedures.


Assuntos
Algoritmos , Imageamento Tridimensional , Humanos , Vértebras Lombares , Imageamento por Ressonância Magnética , Modelos Estatísticos , Dor
15.
Biomed Phys Eng Express ; 6(4): 045019, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-33444279

RESUMO

The use of intra-operative imaging system as an intervention solution to provide more accurate localization of complicated structures has become a necessity during the neurosurgery. However, due to the limitations of conventional imaging systems, high-quality real-time intra-operative imaging remains as a challenging problem. Meanwhile, photoacoustic imaging has appeared so promising to provide images of crucial structures such as blood vessels and microvasculature of tumors. To achieve high-quality photoacoustic images of vessels regarding the artifacts caused by the incomplete data, we proposed an approach based on the combination of time-reversal (TR) and deep learning methods. The proposed method applies a TR method in the first layer of the network which is followed by the convolutional neural network with weights adjusted to a set of simulated training data for the other layers to estimate artifact-free photoacoustic images. It was evaluated using a generated synthetic database of vessels. The mean of signal to noise ratio (SNR), peak SNR, structural similarity index, and edge preservation index for the test data were reached 14.6 dB, 35.3 dB, 0.97 and 0.90, respectively. As our results proved, by using the lower number of detectors and consequently the lower data acquisition time, our approach outperforms the TR algorithm in all criteria in a computational time compatible with clinical use.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Técnicas Fotoacústicas/métodos , Algoritmos , Animais , Artefatos , Encéfalo/diagnóstico por imagem , Aprendizado Profundo , Diagnóstico por Imagem , Humanos , Camundongos , Imagens de Fantasmas , Razão Sinal-Ruído , Fatores de Tempo
16.
Int J Med Robot ; 16(1): e2035, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31489972

RESUMO

BACKGROUND: Electromagnetic (EM)-based navigation methods without line-of-sight restrictions may improve lymph node sampling precision in transbronchial needle aspiration (TBNA) procedure. However, EM tracking susceptibility to metallic objects severely declines its precision. METHOD: We proposed to track the location of a tool in a dynamic bronchial phantom and compensate field distortion in a real-time procedure. Extended Kalman filter simultaneous localization and mapping (EKF-SLAM) algorithm employ the bronchial motion and observations of a redundant sensor. The proposed approach was applied to the phantom with four different amplitudes of breathing motion in the presence of two types of field-distorting objects. RESULTS: The proposed approach improved the accuracy of EM tracking on average from 18.94 ±1.17 mm to 4.59 ±0.29 mm and from 14.2 ±0.69 mm to 4.31 ±0.18mm in the presence of steel and aluminum, respectively. CONCLUSIONS: With EM tracking position error reduction based on the EKF-SLAM technique, the approach is appeared promising for a navigated ultrasound TBNA procedure.


Assuntos
Brônquios/patologia , Campos Eletromagnéticos , Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico/métodos , Broncoscopia , Humanos
17.
Phys Eng Sci Med ; 43(3): 1087-1099, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32776319

RESUMO

Symmetry plane calculation is used in fracture reduction or reconstruction in the midface. Estimating a reliable symmetry plane without advanced anatomic knowledge is the most critical challenge. In this work, we developed a new automated method to find the mid-plane in CT images of an intact skull and a skull with a unilateral midface fracture. By use of a 3D point-cloud of a skull, we demonstrate that the proposed algorithm could find a mid-plane that meets clinical criteria. There is no need for advanced anatomical knowledge through the use of this algorithm. The algorithm used principal component analysis to find the initial plane. Then the rotation matrix, derived from an iterative closest point (ICP) registration method, is used to update the normal vector of the plane and find the optimum symmetry plane. A mathematical index, Hausdorff distance (HD), is used to evaluate the similarity of one mid-plane side in comparison to the contralateral side. HD decreased by 66% in the intact skull and 65% in a fractured skull and converged in just six iterations. High convergence speed, low computational load, and high accuracy suggest the use of the algorithm in the planning procedure. This easy-to-use algorithm with its advantages, as mentioned above, could be used as an operator in craniomaxillofacial software.


Assuntos
Simulação por Computador , Procedimentos Cirúrgicos Bucais , Crânio/cirurgia , Cirurgia Assistida por Computador , Adulto , Algoritmos , Automação , Humanos , Pessoa de Meia-Idade , Rotação , Crânio/diagnóstico por imagem , Fraturas Cranianas/diagnóstico por imagem , Fraturas Cranianas/cirurgia , Fatores de Tempo , Adulto Jovem , Zigoma/diagnóstico por imagem
18.
Biomed Opt Express ; 11(5): 2533-2547, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32499941

RESUMO

There has been growing interest in low-cost light sources such as light-emitting diodes (LEDs) as an excitation source in photoacoustic imaging. However, LED-based photoacoustic imaging is limited by low signal due to low energy per pulse-the signal is easily buried in noise leading to low quality images. Here, we describe a signal de-noising approach for LED-based photoacoustic signals based on dictionary learning with an alternating direction method of multipliers. This signal enhancement method is then followed by a simple reconstruction approach delay and sum. This approach leads to sparse representation of the main components of the signal. The main improvements of this approach are a 38% higher contrast ratio and a 43% higher axial resolution versus the averaging method but with only 4% of the frames and consequently 49.5% less computational time. This makes it an appropriate option for real-time LED-based photoacoustic imaging.

19.
J Med Imaging (Bellingham) ; 7(4): 044001, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32715023

RESUMO

Purpose: Peripheral retinal lesions substantially increase the risk of diabetic retinopathy and retinopathy of prematurity. The peripheral changes can be visualized in wide field imaging, which is obtained by combining multiple images with an overlapping field of view using mosaicking methods. However, a robust and accurate registration of mosaicking techniques for normal angle fundus cameras is still a challenge due to the random selection of matching points and execution time. We propose a method of retinal image mosaicking based on scale-invariant feature transformation (SIFT) feature descriptor and Voronoi diagram. Approach: In our method, the SIFT algorithm is used to describe local features in the input images. Then the input images are subdivided into regions based on the Voronoi method. Each pair of Voronoi regions is matched by the method zero mean normalized cross correlation. After matching, the retinal images are mapped into the same coordinate system to form a mosaic image. The success rate and the mean registration error (RE) of our method were compared with those of other state-of-the-art methods for the P category of the fundus image registration database. Results: Experimental results show that the proposed method accurately registered 42% of retinal image pairs with a mean RE of 3.040 pixels, while a lower success rate was observed in the other four state-of-the-art retinal image registration methods GDB-ICP (33%), Harris-PIIFD (0%), HM-2016 (0%), and HM-2017 (2%). Conclusions: The proposed method outperforms state-of-the-art methods in terms of quality and running time and reduces the computational complexity.

20.
J Biomed Opt ; 25(10)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33029991

RESUMO

SIGNIFICANCE: Photoacoustic imaging (PAI) has been greatly developed in a broad range of diagnostic applications. The efficiency of light to sound conversion in PAI is limited by the ubiquitous noise arising from the tissue background, leading to a low signal-to-noise ratio (SNR), and thus a poor quality of images. Frame averaging has been widely used to reduce the noise; however, it compromises the temporal resolution of PAI. AIM: We propose an approach for photoacoustic (PA) signal denoising based on a combination of low-pass filtering and sparse coding (LPFSC). APPROACH: LPFSC method is based on the fact that PA signal can be modeled as the sum of low frequency and sparse components, which allows for the reduction of noise levels using a hybrid alternating direction method of multipliers in an optimization process. RESULTS: LPFSC method was evaluated using in-silico and experimental phantoms. The results show a 26% improvement in the peak SNR of PA signal compared to the averaging method for in-silico data. On average, LPFSC method offers a 63% improvement in the image contrast-to-noise ratio and a 33% improvement in the structural similarity index compared to the averaging method for objects located at three different depths, ranging from 10 to 20 mm, in a porcine tissue phantom. CONCLUSIONS: The proposed method is an effective tool for PA signal denoising, whereas it ultimately improves the quality of reconstructed images, especially at higher depths, without limiting the image acquisition speed.


Assuntos
Algoritmos , Animais , Simulação por Computador , Imagens de Fantasmas , Razão Sinal-Ruído , Análise Espectral , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA