Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(22): 12007-12012, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37224264

RESUMO

Reduction of nitrate is an essential, yet challenging chemical task required to manage this relatively inert oxoanion in the environment and biology. We show that thiols, ubiquitous reductants in biology, convert nitrate to nitric oxide at a Cu(II) center under mild conditions. The ß-diketiminato complex [Cl2NNF6]Cu(κ2-O2NO) engages in O-atom transfer with various thiols (RSH) to form the corresponding copper(II) nitrite [CuII](κ2-O2N) and sulfenic acid (RSOH). The copper(II) nitrite further reacts with RSH to give S-nitrosothiols RSNO and [CuII]2(µ-OH)2 en route to NO formation via [CuII]-SR intermediates. The gasotransmitter H2S also reduces nitrate at copper(II) to generate NO, providing a lens into NO3-/H2S crosstalk. The interaction of thiols with nitrate at copper(II) releases a cascade of N- and S-based signaling molecules in biology.

2.
J Am Chem Soc ; 144(19): 8402-8429, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35503922

RESUMO

One of the major goals of bioinorganic chemistry has been to mimic the function of elegant metalloenzymes. Such functional modeling has been difficult to attain in solution, in particular, for reactions that require multiple protons and multiple electrons (nH+/ne-). Using a combination of heterogeneous electrochemistry, electrode and molecule design one may control both electron transfer (ET) and proton transfer (PT) of these nH+/ne- reactions. Such control can allow functional modeling of hydrogenases (H+ + e- → 1/2 H2), cytochrome c oxidase (O2 + 4 e- + 4 H+ → 2 H2O), monooxygenases (RR'CH2 + O2 + 2 e- + 2 H+ → RR'CHOH + H2O) and dioxygenases (S + O2 → SO2; S = organic substrate) in aqueous medium and at room temperatures. In addition, these heterogeneous constructs allow probing unnatural bioinspired reactions and estimation of the inner- and outer-sphere reorganization energy of small molecules and proteins.


Assuntos
Química Bioinorgânica , Hidrogenase , Eletrodos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Hidrogenase/química , Oxirredução , Prótons
3.
J Am Chem Soc ; 144(8): 3614-3625, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35184564

RESUMO

With the price-competitiveness of solar and wind power, hydrogen technologies may be game changers for a cleaner, defossilized, and sustainable energy future. H2 can indeed be produced in electrolyzers from water, stored for long periods, and converted back into power, on demand, in fuel cells. The feasibility of the latter process critically depends on the discovery of cheap and efficient catalysts able to replace platinum group metals at the anode and cathode of fuel cells. Bioinspiration can be key for designing such alternative catalysts. Here we show that a novel class of iron-based catalysts inspired from the active site of [FeFe]-hydrogenase behave as unprecedented bidirectional electrocatalysts for interconverting H2 and protons efficiently under near-neutral aqueous conditions. Such bioinspired catalysts have been implemented at the anode of a functional membrane-less H2/O2 fuel cell device.


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Catálise , Domínio Catalítico , Hidrogênio/química , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Prótons , Água
4.
J Am Chem Soc ; 144(46): 21136-21145, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36351171

RESUMO

Molecular catalysts for ammonia oxidation to dinitrogen represent enabling components to utilize ammonia as a fuel and/or source of hydrogen. Ammonia oxidation requires not only the breaking of multiple strong N-H bonds but also controlled N-N bond formation. We report a novel ß-diketiminato copper complex [iPr2NNF6]CuI-NH3 ([CuI]-NH3 (2)) as a robust electrocatalyst for NH3 oxidation in acetonitrile under homogeneous conditions. Complex 2 operates at a moderate overpotential (η = 700 mV) with a TOFmax = 940 h-1 as determined from CV data in 1.3 M NH3-MeCN solvent. Prolonged (>5 h) controlled potential electrolysis (CPE) reveals the stability and robustness of the catalyst under electrocatalytic conditions. Detailed mechanistic investigations indicate that electrochemical oxidation of [CuI]-NH3 forms {[CuII]-NH3}+ (4), which undergoes deprotonation by excess NH3 to form reactive copper(II)-amide ([CuII]-NH2, 6) unstable toward N-N bond formation to give the dinuclear hydrazine complex [CuI]2(µ-N2H4). Electrochemical studies reveal that the diammine complex [CuI](NH3)2 (7) forms at high ammonia concentration as part of the {[CuII](NH3)2}+/[CuI](NH3)2 redox couple that is electrocatalytically inactive. DFT analysis reveals a much higher thermodynamic barrier for deprotonation of the four-coordinate {[CuII](NH3)2}+ (8) by NH3 to give the copper(II) amide [CuII](NH2)(NH3) (9) (ΔG = 31.7 kcal/mol) as compared to deprotonation of the three-coordinate {[CuII]-NH3}+ by NH3 to provide the reactive three-coordinate parent amide [CuII]-NH2 (ΔG = 18.1 kcal/mol) susceptible to N-N coupling to form [CuI]2(µ-N2H4) (ΔG = -11.8 kcal/mol).


Assuntos
Amônia , Cobre , Cobre/química , Amônia/química , Catálise , Termodinâmica , Amidas
5.
Chem Soc Rev ; 50(6): 3755-3823, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33514959

RESUMO

Reduction of oxides and oxoanions of carbon and nitrogen are of great contemporary importance as they are crucial for a sustainable environment. Substantial research has been dedicated to these areas in the last few decades. These reductions require both electrons and protons and their thermodynamic potentials often make them compete with hydrogen evolution reaction i.e., the reaction of protons and electrons to generate H2. These reactions are abundant in the environment in microorganisms and are facilitated by naturally occurring enzymes. This review brings together the state-of-the-art knowledge in the area of enzymatic reduction of CO2, NO2- and H+ with those of artificial molecular electrocatalysis. A simple ligand field theory-based design principle for electrocatalysts is first described. The electronic structure considerations developed automatically yield the basic geometry required and the 2nd sphere interactions which can potentially aid the activation and the further reduction of these small molecules. A systematic review of the enzymatic reaction followed by those reported in artificial molecular electrocatalysts is presented for the reduction of CO2, NO2- and H+. The review is focused on mechanism of action of these metalloenzymes and artificial electrocatalysts and discusses general principles that guide the rates and product selectivity of these reactions. The importance of the 2nd sphere interactions in both enzymatic and artificial molecular catalysis is discussed in detail.


Assuntos
Dióxido de Carbono/química , Nitritos/química , Dióxido de Carbono/metabolismo , Catálise , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Hidrogênio/química , Hidrogênio/metabolismo , Metaloproteínas/química , Metaloproteínas/metabolismo , Nitritos/metabolismo , Oxirredução , Óxidos/química , Óxidos/metabolismo , Prótons , Teoria Quântica
6.
Inorg Chem ; 59(8): 5292-5302, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32267696

RESUMO

The chemical and electrochemical reduction of CO2 to value added chemicals entails the development of efficient and selective catalysts. Synthesis, characterization and electrochemical CO2 reduction activity of a air-stable cobalt(III) diphenylphosphenethano-bis(2-pyridinethiolate)chloride [{Co(dppe)(2-PyS)2}Cl, 1-Cl] complex is divulged. The complex reduces CO2 under homogeneous electrocatalytic conditions to produce CO with high Faradaic efficiency (FE > 92%) and selectivity in the presence of water. Through detailed electrochemical investigations, product analysis, and mechanistic investigations supported by theoretical calculations, it is established that complex 1-Cl reduces CO2 in its Co(I) state. A reductive cleavage leads to a dangling protonated pyridine arm which enables facile CO2 binding through a H-bond donation and facilitates the C-O bond cleavage via a directed protonation. A systematic benchmarking of this catalyst indicates that it has a modest overpotential (∼180 mV) and a TOF of ∼20 s-1 for selective reduction of CO2 to CO with H2O as a proton source.

7.
J Am Chem Soc ; 140(39): 12457-12468, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30180564

RESUMO

The instability of [FeFe]-H2ases and their biomimetics toward O2 renders them inefficient to implement in practical H2 generation (HER). Previous investigations on synthetic models as well as natural enzymes proved that reactive oxygen species (ROS) generated on O2 exposure oxidatively degrades the 2Fe subcluster within the H-cluster active site. Recent electrochemical studies, coupled with theoretical investigations on [FeFe]-H2ase suggested that selective O2 reduction to H2O could eliminate the ROS, and hence, tolerance against oxidative degradation could be achieved ( Nat. Chem. 2017, 9, 88-95). We have prepared a series of 2Fe subsite mimics with substituted arenes attached to bridgehead N atoms in the S to S linker, (µ-S2(CH2)2NAr)[Fe(CO)3]2. Structural analyses find the nature of the substituent on the arene offers steric control of the orientation of bridgehead N atoms, affecting their proton uptake and translocation ability. The heterogeneous electrochemical studies of these complexes physiadsorbed on edge plane graphite (EPG) electrode show the onset of HER activity at ∼180 mV overpotential in pH 5.5 water. In addition, bridgehead N-protonation and subsequent H-bonding capability are established to facilitate the O-O bond cleavage resulting in selective O2 reduction to H2O. This allows a synthetic [FeFe]-H2ase model to reduce protons to H2 unabated in the presence of dissolved O2 in water at nearly neutral pH (pH 5.5); i.e., O2-tolerant, stable HER activity is achieved.

8.
Inorg Chem ; 57(10): 5939-5947, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-29714479

RESUMO

Reduction of CO2 holds the key to solving two major challenges taunting the society-clean energy and clean environment. There is an urgent need for the development of efficient non-noble metal-based catalysts that can reduce CO2 selectively and efficiently. Unfortunately, activation and reduction of CO2 can only be achieved by highly reduced metal centers jeopardizing the energy efficiency of the process. A carbon monoxide dehydrogenase inspired Co complex bearing a dithiolato ligand can reduce CO2, in wet acetonitrile, to CO with ∼95% selectivity over a wide potential range and 1559 s-1 rate with a remarkably low overpotential of 70 mV. Unlike most of the transition-metal-based systems that require reduction of the metal to its formal zerovalent state for CO2 reduction, this catalyst can reduce CO2 in its formal +1 state making it substantially more energy efficient than any system known to show similar reactivity. While covalent donation from one thiolate increases electron density at the Co(I) center enabling it to activate CO2, protonation of the bound thiolate, in the presence of H2O as a proton source, plays a crucial role in lowering overpotential (thermodynamics) and ensuring facile proton transfer to the bound CO2 ensuring facile (kinetics) reactivity. A very covalent Co(III)-C bond in a Co(III)-COOH intermediate is at the heart of selective protonation of the oxygen atoms to result in CO as the exclusive product of the reduction.

9.
Angew Chem Int Ed Engl ; 57(49): 16001-16004, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30307683

RESUMO

[NiFe]-hydrogenase enzymes are efficient catalysts for H2 evolution but their synthetic models have not been reported to be active under aqueous conditions so far. Here we show that a close model of the [NiFe]-hydrogenase active site can work as a very active and stable heterogeneous H2 evolution catalyst under mildly acidic aqueous conditions. Entry in catalysis is a NiI FeII complex, with electronic structure analogous to the Ni-L state of the enzyme, corroborating the mechanism modification recently proposed for [NiFe]-hydrogenases.


Assuntos
Hidrogênio/metabolismo , Hidrogenase/metabolismo , Modelos Biológicos , Biocatálise , Domínio Catalítico , Teoria da Densidade Funcional , Hidrogênio/química , Concentração de Íons de Hidrogênio , Hidrogenase/química , Conformação Molecular , Soluções , Água/química , Água/metabolismo
10.
Chem Commun (Camb) ; 53(58): 8188-8191, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28681053

RESUMO

A synthetic mimic of Fe-Fe hydrogenase (H2ase) is reported which bears a terminal alkyne group in the ligand. Using a terminal azide bearing organic linkers, this complex could be covalently attached to various electrode surfaces (e.g. edge plane graphite, reduced graphene oxide, etc.). The electrocatalytic hydrogen evolution (HER) efficiency of these constructs is investigated and the results show that the EPG-H2ase mimic construct is able to produce H2 from acidic water efficiently with over 90% selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA