Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38927921

RESUMO

Cancers can manifest large variations in tumor phenotypes due to genetic and microenvironmental factors, which has motivated the development of quantitative radiomics-based image analysis with the aim to robustly classify tumor phenotypes in vivo. Positron emission tomography (PET) imaging can be particularly helpful in elucidating the metabolic profiles of tumors. However, the relatively low resolution, high noise, and limited PET data availability make it difficult to study the relationship between the microenvironment properties and metabolic tumor phenotype as seen on the images. Most of previously proposed digital PET phantoms of tumors are static, have an over-simplified morphology, and lack the link to cellular biology that ultimately governs the tumor evolution. In this work, we propose a novel method to investigate the relationship between microscopic tumor parameters and PET image characteristics based on the computational simulation of tumor growth. We use a hybrid, multiscale, stochastic mathematical model of cellular metabolism and proliferation to generate simulated cross-sections of tumors in vascularized normal tissue on a microscopic level. The generated longitudinal tumor growth sequences are converted to PET images with realistic resolution and noise. By changing the biological parameters of the model, such as the blood vessel density and conditions for necrosis, distinct tumor phenotypes can be obtained. The simulated cellular maps were compared to real histology slides of SiHa and WiDr xenografts imaged with Hoechst 33342 and pimonidazole. As an example application of the proposed method, we simulated six tumor phenotypes that contain various amounts of hypoxic and necrotic regions induced by a lack of oxygen and glucose, including phenotypes that are distinct on the microscopic level but visually similar in PET images. We computed 22 standardized Haralick texture features for each phenotype, and identified the features that could best discriminate the phenotypes with varying image noise levels. We demonstrated that "cluster shade" and "difference entropy" are the most effective and noise-resilient features for microscopic phenotype discrimination. Longitudinal analysis of the simulated tumor growth showed that radiomics analysis can be beneficial even in small lesions with a diameter of 3.5-4 resolution units, corresponding to 8.7-10.0 mm in modern PET scanners. Certain radiomics features were shown to change non-monotonically with tumor growth, which has implications for feature selection for tracking disease progression and therapy response.

2.
EJNMMI Radiopharm Chem ; 8(1): 33, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870640

RESUMO

BACKGROUND: Reduced expression or impaired signalling of tropomyosin receptor kinases (Trk receptors) are found in a vast spectrum of CNS disorders. [18F]TRACK is the first PET radioligand for TrkB/C with proven in vivo brain penetration and on-target specific signal. Here we report dosimetry data for [18F]TRACK in healthy humans. 6 healthy participants (age 22-61 y, 3 female) were scanned on a General Electric Discovery PET/CT 690 scanner. [18F]TRACK was synthesized with high molar activities (Am = 250 ± 75 GBq/µmol), and a dynamic series of 12 whole-body scans were acquired after injection of 129 to 147 MBq of the tracer. Images were reconstructed with standard corrections using the manufacturer's OSEM algorithm. Tracer concentration time-activity curves (TACs) were obtained using CT-derived volumes-of-interest. Organ-specific doses and the total effective dose were estimated using the Committee on Medical Internal Radiation Dose equation for adults and tabulated Source tissue values (S values). RESULTS: Average organ absorbed dose was highest for liver and gall bladder with 6.1E-2 (± 1.06E-2) mGy/MBq and 4.6 (± 1.18E-2) mGy/MBq, respectively. Total detriment weighted effective dose EDW was 1.63E-2 ± 1.68E-3 mSv/MBq. Organ-specific TACs indicated predominantly hepatic tracer elimination. CONCLUSION: Total and organ-specific effective doses for [18F]TRACK are low and the dosimetry profile is similar to other 18F-labelled radio tracers currently used in clinical settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA