Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704508

RESUMO

Sensory abnormalities are observed in ~90% of individuals with autism spectrum disorders (ASD), but the underlying mechanisms are poorly understood. GluN2B, an NMDA receptor subunit that regulates long-term depression and circuit refinement during brain development, has been strongly implicated in ASD, but whether GRIN2B mutations lead to sensory abnormalities remains unclear. Here, we report that Grin2b-mutant mice show behavioral sensory hypersensitivity and brain hyperconnectivity associated with the anterior cingulate cortex (ACC). Grin2b-mutant mice with a patient-derived C456Y mutation (Grin2bC456Y/+) show sensory hypersensitivity to mechanical, thermal, and electrical stimuli through supraspinal mechanisms. c-fos and functional magnetic resonance imaging indicate that the ACC is hyperactive and hyperconnected with other brain regions under baseline and stimulation conditions. ACC pyramidal neurons show increased excitatory synaptic transmission. Chemogenetic inhibition of ACC pyramidal neurons normalizes ACC hyperconnectivity and sensory hypersensitivity. These results suggest that GluN2B critically regulates ASD-related cortical connectivity and sensory brain functions.

2.
Antimicrob Agents Chemother ; : e0034124, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742905

RESUMO

Cell culture-based screening of a chemical library identified diphenoxylate as an antiviral agent against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The observed 50% effective concentrations ranged between 1.4 and 4.9 µM against the original wild-type strain and its variants. Time-of-addition experiments indicated that diphenoxylate is an entry blocker targeting a host factor involved in viral infection. Fluorescence microscopic analysis visualized that diphenoxylate prevented SARS-CoV-2 particles from penetrating the cell membrane and also impaired endo-lysosomal acidification. Diphenoxylate exhibited a synergistic inhibitory effect on SARS-CoV-2 infection in human lung epithelial Calu-3 cells when combined with a transmembrane serine protease 2 (TMPRSS2) inhibitor, nafamostat. This synergy suggested that efficient antiviral activity is achieved by blocking both TMPRSS2-mediated early and endosome-mediated late SARS-CoV-2 entry pathways. The antiviral efficacy of diphenoxylate against SARS-CoV-2 was reproducible in a human tonsil organoids system. In a transgenic mouse model expressing the obligate SARS-CoV-2 receptor, human angiotensin-converting enzyme 2, intranasal administration of diphenoxylate (10 mg/kg/day) significantly reduced the viral RNA copy number in the lungs by 70% on day 3. This study underscores that diphenoxylate represents a promising core scaffold, warranting further exploration for chemical modifications aimed at developing a new class of clinically effective antiviral drugs against SARS-CoV-2.

3.
Bioinformatics ; 38(2): 364-368, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34515778

RESUMO

MOTIVATION: Poor metabolic stability leads to drug development failure. Therefore, it is essential to evaluate the metabolic stability of small compounds for successful drug discovery and development. However, evaluating metabolic stability in vitro and in vivo is expensive, time-consuming and laborious. In addition, only a few free software programs are available for metabolic stability data and prediction. Therefore, in this study, we aimed to develop a prediction model that predicts the metabolic stability of small compounds. RESULTS: We developed a computational model, PredMS, which predicts the metabolic stability of small compounds as stable or unstable in human liver microsomes. PredMS is based on a random forest model using an in-house database of metabolic stability data of 1917 compounds. To validate the prediction performance of PredMS, we generated external test data of 61 compounds. PredMS achieved an accuracy of 0.74, Matthew's correlation coefficient of 0.48, sensitivity of 0.70, specificity of 0.86, positive predictive value of 0.94 and negative predictive value of 0.46 on the external test dataset. PredMS will be a useful tool to predict the metabolic stability of small compounds in the early stages of drug discovery and development. AVAILABILITY AND IMPLEMENTATION: The source code for PredMS is available at https://bitbucket.org/krictai/predms, and the PredMS web server is available at https://predms.netlify.app. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Microssomos Hepáticos , Algoritmo Florestas Aleatórias , Humanos , Microssomos Hepáticos/metabolismo , Software , Descoberta de Drogas
4.
BMC Neurosci ; 24(1): 39, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525115

RESUMO

BACKGROUND: Several phosphodiesterase 4 (PDE4) inhibitors have emerged as potential therapeutics for central nervous system (CNS) diseases. This study investigated the pharmacological effects of two selective PDE4 inhibitors, roflumilast and zatolmilast, against lipopolysaccharide-induced neuroinflammation. RESULTS: In BV-2 cells, the PDE4 inhibitor roflumilast reduced the production of nitric oxide and tumor necrosis factor-α (TNF-α) by inhibiting NF-κB phosphorylation. Moreover, mice administered roflumilast had significantly reduced TNF-α, interleukin-1ß (IL-1ß), and IL-6 levels in plasma and brain tissues. By contrast, zatolmilast, a PDE4D inhibitor, showed no anti-neuroinflammatory effects in vitro or in vivo. Next, in vitro and in vivo pharmacokinetic studies of these compounds in the brain were performed. The apparent permeability coefficients of 3 µM roflumilast and zatolmilast were high (> 23 × 10-6 cm/s) and moderate (3.72-7.18 × 10-6 cm/s), respectively, and increased in a concentration-dependent manner in the MDR1-MDCK monolayer. The efflux ratios were < 1.92, suggesting that these compounds are not P-glycoprotein substrates. Following oral administration, both roflumilast and zatolmilast were slowly absorbed and eliminated, with time-to-peak drug concentrations of 2-2.3 h and terminal half-lives of 7-20 h. Assessment of their brain dispositions revealed the unbound brain-to-plasma partition coefficients of roflumilast and zatolmilast to be 0.17 and 0.18, respectively. CONCLUSIONS: These findings suggest that roflumilast, but not zatolmilast, has the potential for use as a therapeutic agent against neuroinflammatory diseases.


Assuntos
Inibidores da Fosfodiesterase 4 , Camundongos , Animais , Inibidores da Fosfodiesterase 4/farmacologia , Doenças Neuroinflamatórias , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa , Aminopiridinas/farmacologia , Ciclopropanos/farmacologia , Ciclopropanos/uso terapêutico
5.
Bioorg Med Chem Lett ; 96: 129504, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37838342

RESUMO

This study aimed to explore non-pyridinium oxime acetylcholinesterase (AChE) reactivators that could hold the potential to overcome the limitations of the currently available compounds used in the clinic to treat the neurologic manifestations induced by intoxication with organophosphorus agents. Fifteen compounds with various non-pyridinium oxime moieties were evaluated for AChE activity at different concentrations, including aldoximes, ketoximes, and α-ketoaldoximes. The therapeutic potential of the oxime compounds was evaluated by assessing their ability to reactivate AChE inhibited by paraoxon. Among the tested compounds, α-Ketoaldoxime derivative 13 showed the highest reactivation (%) reaching 67 % and 60 % AChE reactivation when evaluated against OP-inhibited electric eel AChE at concentrations of 1,000 and 100 µM, respectively. Compound 13 showed a comparable reactivation ability of AChE (60 %) compared to that of pralidoxime (56 %) at concentrations of 100 µM. Molecular docking simulation of the most active compounds 12 and 13 was conducted to predict the binding mode of the reactivation of electric eel AChE. As a result, a non-pyridinium oxime moiety 13, is a potential reactivator of OP-inhibited AChE and is taken as a lead compound for the development of novel AChE reactivators with enhanced capacity to freely cross the blood-brain barrier.


Assuntos
Reativadores da Colinesterase , Oximas , Oximas/farmacologia , Oximas/química , Paraoxon/farmacologia , Acetilcolinesterase/metabolismo , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Compostos de Piridínio/farmacologia , Compostos de Piridínio/química , Acetamidas , Compostos Organofosforados/química
6.
Bioinformatics ; 37(8): 1135-1139, 2021 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-33112379

RESUMO

MOTIVATION: Identification of blood-brain barrier (BBB) permeability of a compound is a major challenge in neurotherapeutic drug discovery. Conventional approaches for BBB permeability measurement are expensive, time-consuming and labor-intensive. BBB permeability is associated with diverse chemical properties of compounds. However, BBB permeability prediction models have been developed using small datasets and limited features, which are usually not practical due to their low coverage of chemical diversity of compounds. Aim of this study is to develop a BBB permeability prediction model using a large dataset for practical applications. This model can be used for facilitated compound screening in the early stage of brain drug discovery. RESULTS: A dataset of 7162 compounds with BBB permeability (5453 BBB+ and 1709 BBB-) was compiled from the literature, where BBB+ and BBB- denote BBB-permeable and non-permeable compounds, respectively. We trained a machine learning model based on Light Gradient Boosting Machine (LightGBM) algorithm and achieved an overall accuracy of 89%, an area under the curve (AUC) of 0.93, specificity of 0.77 and sensitivity of 0.93, when 10-fold cross-validation was performed. The model was further evaluated using 74 central nerve system compounds (39 BBB+ and 35 BBB-) obtained from the literature and showed an accuracy of 90%, sensitivity of 0.85 and specificity of 0.94. Our model outperforms over existing BBB permeability prediction models. AVAILABILITYAND IMPLEMENTATION: The prediction server is available at http://ssbio.cau.ac.kr/software/bbb.


Assuntos
Barreira Hematoencefálica , Aprendizado de Máquina , Transporte Biológico , Encéfalo , Permeabilidade
7.
Neurochem Res ; 47(12): 3829-3837, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36309631

RESUMO

Selonsertib is a first-in-class apoptosis signal-regulating kinase 1 (ASK1) inhibitor in clinical trials for treating NASH and diabetic kidney disease due to its anti-inflammatory and anti-fibrotic activities. In the present study, we investigated the anti-neuroinflammatory effects and brain pharmacokinetic properties of selonsertib. It inhibited inflammatory cytokines and NO production by suppressing phosphorylated ASK1 in the LPS-stimulated microglial cell line, BV2 cells. Consistent with the in vitro results, selonsertib attenuated plasma and brain TNF-α levels in the LPS-induced murine neuroinflammation model. In vitro and in vivo pharmacokinetic studies of selonsertib were conducted in support of central nervous system (CNS) drug discovery. In both Caco-2 and MDR-MDCK cells, selonsertib exhibited a high efflux ratio, showing that it is a P-gp substrate. Selonsertib was rapidly and effectively absorbed into the systemic circulation after oral treatment, with a Tmax of 0.5 h and oral bioavailability of 74%. In comparison with high systemic exposure with Cmax of 16.2 µg/ml and AUC of 64 µg·h/mL following oral dosing of 10 mg/kg, the brain disposition of selonsertib was limited, with Cmax of 0.08 µg/g and Kp value of 0.004. This study demonstrates that selonsertib can be a therapeutic agent for neuroinflammatory diseases.


Assuntos
Lipopolissacarídeos , MAP Quinase Quinase Quinase 5 , Animais , Camundongos , Encéfalo/metabolismo , Células CACO-2 , Lipopolissacarídeos/farmacologia , MAP Quinase Quinase Quinase 5/metabolismo , MAP Quinase Quinase Quinase 5/farmacologia , Microglia/metabolismo
8.
Xenobiotica ; 48(8): 831-838, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28803538

RESUMO

1. We characterized the pharmacokinetics of tafamidis, a novel drug to treat transthyretin-related amyloidosis, in rats after intravenous and oral administration at doses of 0.3-3 mg/kg. In vitro Caco-2 cell permeability and liver microsomal stability, as well as in vivo tissue distribution and plasma protein binding were also examined. 2. After intravenous injection, systemic clearance (CL), volumes of distribution at steady state (Vss) and half-life (T½) remained unaltered as a function of dose, with values in the ranges of 6.41-7.03 mL/h/kg, 270-354 mL/kg and 39.5-46.9 h, respectively. Following oral administration, absolute bioavailability was 99.7-104% and was independent of doses from 0.3 to 3 mg/kg. In the urine and faeces, 4.36% and 48.9% of tafamidis, respectively, were recovered. 3. Tafamidis was distributed primarily in the liver and not in the brain, kidney, testis, heart, spleen, lung, gut, muscle, or adipose tissue. Further, tafamidis was very stable in rat liver microsomes, and its plasma protein binding was 99.9%. 4. In conclusion, tafamidis showed dose-independent pharmacokinetics with intravenous and oral doses of 0.3-3 mg/kg. Tafamidis undergoes minimal first-pass metabolism, distributes mostly in the liver and plasma, and appears to be eliminated primarily via biliary excretion.


Assuntos
Neuropatias Amiloides Familiares , Benzoxazóis/farmacologia , Benzoxazóis/farmacocinética , Encéfalo/metabolismo , Fígado/metabolismo , Neuropatias Amiloides Familiares/tratamento farmacológico , Neuropatias Amiloides Familiares/metabolismo , Neuropatias Amiloides Familiares/patologia , Animais , Encéfalo/patologia , Células CACO-2 , Humanos , Fígado/patologia , Masculino , Microssomos Hepáticos/metabolismo , Microssomos Hepáticos/patologia , Especificidade de Órgãos , Ratos , Ratos Sprague-Dawley
9.
Molecules ; 22(11)2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29120388

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1) is an immunosuppressive enzyme that is highly overexpressed in various cancer cells and antigen-presenting cells. It has emerged as an attractive therapeutic target for cancer immunotherapy, which has prompted high interest in the development of small-molecule inhibitors. To discover novel IDO1 inhibitors, we designed and synthesized a series of N'-hydroxyindazolecarboximidamides. Among the compounds synthesized, compound 8a inhibited both tryptophan depletion and kynurenine production through the IDO1 enzyme. Molecular docking studies revealed that 8a binds to IDO1 with the same binding mode as the analog, epacadostat (INCB24360). Here, we report the synthesis and biological evaluation of these hydroxyindazolecarboximidamides and present the molecular docking study of 8a with IDO1.


Assuntos
Inibidores Enzimáticos/química , Indolamina-Pirrol 2,3,-Dioxigenase/química , Modelos Moleculares , Técnicas de Química Sintética , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Relação Estrutura-Atividade
10.
Bioorg Med Chem Lett ; 26(7): 1720-5, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26923695

RESUMO

A series of novel 2,4-diaminopyrimidines bearing tetrahydronaphthalenyl moiety were synthesized and evaluated for their anti-anaplastic lymphoma kinase (ALK) activities using enzymatic and cell-based assays. Among the compounds synthesized, compound 17b showed promising pharmacological results in in vitro, ex vivo, and pharmacokinetic studies. An in vivo efficacy study with compound 17b demonstrated highly potent inhibitory activity in H3122 tumor xenograft model mice. A series of kinase assays showed that compound 17b inhibited various kinases including FAK, ACK1, FGFR, RSK1, IGF-1R, among others, thus demonstrating its potential for synergistic anti-tumor activity and development as a multi-targeted non-small cell lung cancer (NSCLC) therapy.


Assuntos
Antineoplásicos/química , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Pirimidinas/química , Pirimidinas/uso terapêutico , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Quinase do Linfoma Anaplásico , Animais , Antineoplásicos/farmacocinética , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Linhagem Celular Tumoral , Humanos , Pulmão/efeitos dos fármacos , Pulmão/enzimologia , Neoplasias Pulmonares/enzimologia , Masculino , Camundongos , Camundongos SCID , Naftalenos/química , Naftalenos/farmacocinética , Naftalenos/uso terapêutico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/farmacocinética , Ratos , Receptores Proteína Tirosina Quinases/metabolismo
11.
Bioorg Med Chem ; 24(2): 207-19, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26712094

RESUMO

Exploration of the two-position side chain of pyrimidine in LDK378 with tetrahydroisoquinolines (THIQs) led to discovery of 8 and 17 as highly potent ALK inhibitors. THIQs 8 and 17 showed encouraging in vitro and in vivo xenograft efficacies, comparable with those of LDK378. Although THIQ analogs (8a-o and 17a-i) prepared were not as active as their parent compounds, both 8 and 17 have significant inhibitory activities against various ALK mutant enzymes including G1202R, indicating that this series of compounds could be further optimized as useful ALK inhibitors overcoming the resistance issues found from crizotinib and LDK378.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Pirimidinas/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Tetra-Hidroisoquinolinas/farmacologia , Quinase do Linfoma Anaplásico , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Camundongos Nus , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Pirimidinas/síntese química , Pirimidinas/química , Ratos , Receptores Proteína Tirosina Quinases/metabolismo , Relação Estrutura-Atividade , Tetra-Hidroisoquinolinas/química , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Bioorg Med Chem Lett ; 25(18): 3992-8, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26235945
13.
Xenobiotica ; 44(5): 465-71, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24152122

RESUMO

1. A novel diacylglyceride acyltransferase-1 (DGAT-1) inhibitor, 2-(4-(4-(5-(2-phenyl-5-(trifluoromethyl) oxazole-4-carboxamido)-1H-benzo[d]imidazol-2-yl)phenyl)cyclohexyl) acetic acid (KR-69232), was synthesized for a potential therapeutic use against several metabolic disorders, such as obesity, insulin resistance, and type II diabetes, characterized by excessive triglycerides (TGs) in the blood. 2. The half-lives against phase I metabolism were measured as 75.3 ± 20.9 min and over 120 min in rat and human liver microsomes, respectively. In Caco-2 cell monolayers, extremely low permeability (<0.13 × 10⁻6cm/s) was seen in the absorptive direction, predicting limited intestinal absorption of KR-69232. This compound was highly bound to rat and human plasma proteins (>99.8%). 3. With the intravenous administration of KR-69232 in rats (1, 2, and 5 mg/kg), non-linear kinetics were observed at the highest dose, with significantly higher systemic clearance, higher volume of distribution, and lower dose-normalized AUC. Following oral administration, it exhibited low bioavailability (<10%) and was absorbed slowly (T(max), 3.8-5.2 h) over the dose range. We also confirmed that considerable KR-69232 remained in the intestine at T(max), demonstrating its limited absorption into the systemic circulation.


Assuntos
Acetatos/farmacocinética , Benzimidazóis/farmacocinética , Diacilglicerol O-Aciltransferase/antagonistas & inibidores , Inibidores Enzimáticos/farmacocinética , Acetatos/metabolismo , Animais , Benzimidazóis/metabolismo , Proteínas Sanguíneas/metabolismo , Células CACO-2/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Inativação Metabólica , Absorção Intestinal , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Permeabilidade , Ratos , Ratos Sprague-Dawley
14.
Oncol Rep ; 52(2)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38904203

RESUMO

Monopolar spindle 1 kinase (Mps1, also known as TTK protein kinase) inhibitors exert marked anticancer effects against triple­negative breast cancer (TNBC) by causing genomic instability and cell death. As aneuploid cells are vulnerable to compounds that induce energy stress through adenosine monophosphate­activated protein kinase (AMPK) activation, the synergistic effect of Mps1/TTK inhibition and AMPK activation was investigated in the present study. The combined effects of CFI­402257, an Mps1/TTK inhibitor, and AICAR, an AMPK agonist, were evaluated in terms of cytotoxicity, cell­cycle distribution, and in vivo xenograft models. Additional molecular mechanistic studies were conducted to elucidate the mechanisms underlying apoptosis and autophagic cell death. The combination of CFI­402257 and AICAR showed selective cytotoxicity in a TNBC cell line. The formation of polyploid cells was attenuated, and apoptosis was increased by the combination treatment, which also induced autophagy through dual inhibition of the PI3K/Akt/mTOR and mitogen­activated protein kinase (MAPK) signaling pathways. Additionally, the combination therapy showed strongly improved efficacy in comparison with CFI­402257 and AICAR monotherapy in the MDA­MB­231 xenograft model. The present study suggested that the combination of CFI­402257 and AICAR is a promising therapeutic strategy for TNBC.


Assuntos
Proteínas Quinases Ativadas por AMP , Aminoimidazol Carboxamida , Apoptose , Autofagia , Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinases , Ribonucleotídeos , Neoplasias de Mama Triplo Negativas , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Humanos , Feminino , Animais , Camundongos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular Tumoral , Ribonucleotídeos/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sinergismo Farmacológico , Compostos de Bifenilo , Pironas , Tiofenos
15.
Comput Struct Biotechnol J ; 21: 3532-3539, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484492

RESUMO

Stability of compounds in the human plasma is crucial for maintaining sufficient systemic drug exposure and considered an essential factor in the early stages of drug discovery and development. The rapid degradation of compounds in the plasma can result in poor in vivo efficacy. Currently, there are no open-source software programs for predicting human plasma stability. In this study, we developed an attention-based graph neural network, PredPS to predict the plasma stability of compounds in human plasma using in-house and open-source datasets. The PredPS outperformed the two machine learning and two deep learning algorithms that were used for comparison indicating its stability-predicting efficiency. PredPS achieved an area under the receiver operating characteristic curve of 90.1%, accuracy of 83.5%, sensitivity of 82.3%, and specificity of 84.6% when evaluated using 5-fold cross-validation. In the early stages of drug discovery, PredPS could be a helpful method for predicting the human plasma stability of compounds. Saving time and money can be accomplished by adopting an in silico-based plasma stability prediction model at the high-throughput screening stage. The source code for PredPS is available at https://bitbucket.org/krict-ai/predps and the PredPS web server is available at https://predps.netlify.app.

16.
Cancers (Basel) ; 15(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36980623

RESUMO

Epigenetic dysregulation characterized by aberrant DNA hypermethylation is a hallmark of cancer, and it can be targeted by hypomethylating agents (HMAs). Recently, we described the superior therapeutic efficacy of a novel HMA, namely, NTX-301, when used as a monotherapy and in combination with venetoclax in the treatment of acute myeloid leukemia. Following a previous study, we further explored the therapeutic properties of NTX-301 based on experimental investigations and integrative data analyses. Comprehensive sensitivity profiling revealed that NTX-301 primarily exerted anticancer effects against blood cancers and exhibited improved potency against a wide range of solid cancers. Subsequent assays showed that the superior efficacy of NTX-301 depended on its strong effects on cell cycle arrest, apoptosis, and differentiation. Due to its superior efficacy, low doses of NTX-301 achieved sufficiently substantial tumor regression in vivo. Multiomics analyses revealed the mechanisms of action (MoAs) of NTX-301 and linked these MoAs to markers of sensitivity to NTX-301 and to the demethylation activity of NTX-301 with high concordance. In conclusion, our findings provide a rationale for currently ongoing clinical trials of NTX-301 and will help guide the development of novel therapeutic options for cancer patients.

17.
Pharm Res ; 29(11): 3040-52, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22410804

RESUMO

PURPOSE: To evaluate abilities of 2-aryl-4-benzoyl-imidazoles (ABI) to overcome multidrug resistance (MDR), define their cellular target, and assess in vivo antimelanoma efficacy. METHODS: MDR cell lines that overexpressed P-glycoprotein, MDR-associated proteins, and breast cancer resistance protein were used to evaluate ABI ability to overcome MDR. Cell cycle analysis, molecular modeling, and microtubule imaging were used to define ABI cellular target. SHO mice bearing A375 human melanoma xenograft were used to evaluate ABI in vivo antitumor activity. B16-F10/C57BL mouse melanoma lung metastasis model was used to test ABI efficacy to inhibit tumor lung metastasis. RESULTS: ABIs showed similar potency to MDR cells compared to matching parent cells. ABIs were identified to target tubulin on the colchicine binding site. After 31 days of treatment, ABI-288 dosed at 25 mg/kg inhibited melanoma tumor growth by 69%; dacarbazine at 60 mg/kg inhibited growth by 52%. ABI-274 dosed at 25 mg/kg showed better lung metastasis inhibition than dacarbazine at 60 mg/kg. CONCLUSIONS: This new class of antimitotic compounds can overcome several clinically important drug resistant mechanisms in vitro and are effective in inhibiting melanoma lung metastasis in vivo, supporting their further development.


Assuntos
Neoplasias Pulmonares/prevenção & controle , Melanoma/tratamento farmacológico , Melanoma/secundário , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Animais não Endogâmicos , Antimitóticos/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Colchicina/metabolismo , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Células HEK293 , Humanos , Imidazóis/farmacologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Melanoma/metabolismo , Melanoma/patologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Pelados , Camundongos Endogâmicos C57BL , Camundongos SCID , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Metástase Neoplásica
18.
Pharm Res ; 29(11): 3053-63, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22760659

RESUMO

PURPOSE: To evaluate the efficacy and oral activity of two promising indoles, (2-(1H-indol-3-yl)-1H-imidazol-4-yl)(3,4,5-trimethoxyphenyl)methanone [compound II] and (2-(1H-indol-5-ylamino)-thiazol-4-yl)(3,4,5-trimethoxyphenyl)methanone [compound IAT], in paclitaxel- and docetaxel-resistant tumor models in vitro and in vivo. METHODS: The in vitro drug-like properties, including potency, solubility, metabolic stability, and drug-drug interactions were examined for our two active compounds. An in vivo pharmacokinetic study and antitumor efficacy study were also completed to compare their efficacy with docetaxel. RESULTS: Both compounds bound to the colchicine-binding site on tubulin, and inhibited tubulin polymerization, resulting in highly potent cytotoxic activity in vitro. While the potency of paclitaxel and docetaxel was compromised in a multidrug-resistant cell line that overexpresses P-glycoprotein, the potency of compounds II and IAT was maintained. Both compounds had favorable drug-like properties, and acceptable oral bioavailability (21-50 %) in mice, rats, and dogs. Tumor growth inhibition of greater than 100 % was achieved when immunodeficient mice with rapidly growing paclitaxel-resistant prostate cancer cells were treated orally at doses of 3-30 mg/kg of II or IAT. CONCLUSIONS: These studies highlight the potent and broad anticancer activity of two orally bioavailable compounds, offering significant pharmacologic advantage over existing drugs of this class for multidrug resistant or taxane-refractory cancers.


Assuntos
Indóis/farmacologia , Indóis/farmacocinética , Neoplasias/tratamento farmacológico , Paclitaxel/farmacologia , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/farmacocinética , Tubulina (Proteína)/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sítios de Ligação/efeitos dos fármacos , Disponibilidade Biológica , Células CACO-2 , Linhagem Celular Tumoral , Colchicina/metabolismo , Docetaxel , Cães , Interações Medicamentosas , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Nus , Neoplasias/metabolismo , Polimerização/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Taxoides/farmacologia
19.
Nutrients ; 14(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36432443

RESUMO

Succinic acid is widely used as a food additive, and its effects on sepsis, cancer, ataxia, and obesity were recently reported. Dietary drug exposure studies have been conducted to evaluate the in vivo efficacy of succinic acid, but limited pharmacokinetic information is available. Therefore, this study evaluated the pharmacokinetic profiles and tissue distribution of succinic acid following a single intravenous or oral dose. A surrogate analyte, succinic acid-13C4 (13C4SA), was administrated to distinguish endogenous and exogenous succinic acid. The concentration of 13C4SA was determined by a validated analytical method using mass spectrometry. After a 10 mg/kg intravenous dose, non-compartmental pharmacokinetic analysis in plasma illustrated that the clearance, volume of distribution, and terminal half-life of 13C4SA were 4574.5 mL/h/kg, 520.8 mL/kg, and 0.56 h, respectively. Oral 13C4SA was absorbed and distributed quickly (bioavailability, 1.5%) at a dose of 100 mg/kg. In addition, 13C4SA exposure was the highest in the liver, followed by brown adipose tissue, white adipose tissue, and the kidneys. This is the first report on the pharmacokinetics of succinic acid after a single dose in mice, and these results could provide a foundation for selecting dosing regimens for efficacy studies.


Assuntos
Ácido Succínico , Camundongos , Animais , Distribuição Tecidual , Administração Oral , Disponibilidade Biológica , Administração Intravenosa
20.
Antibiotics (Basel) ; 11(7)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35884156

RESUMO

Coralmycins, such as coralmycin A and DH-coralmycin A, have novel molecular skeletons and have been reported to exhibit potent antibacterial activity against standard Gram-positive bacterial strains. Here, the in vitro antibacterial activity against an extensive clinical isolate collection, time-kill kinetics, pharmacokinetics (PK), and in vivo efficacy of coralmycins were studied. Coralmycin A showed potent antibacterial activity with an MIC90 of 1 mg/L against 73 clinical methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococci isolates, which was 2-8 times higher than the corresponding activities of DH-coralmycin A, vancomycin, daptomycin, and linezolid, and against 73 vancomycin-resistant Enterococcus and Streptococcus pneumoniae isolates, which was 4-16 times higher than the corresponding activities of DH-coralmycin A, daptomycin, and linezolid. Pharmacokinetic analysis after i.v. injection showed that coralmycins have a moderate volume of distribution and moderate-to-high clearance in mice. The coralmycin A and DH-coralmycin A bioavailability values were 61.3% and 11.7%, respectively, after s.c. administration. In a mouse respiratory tract infection model, coralmycin A showed bacteriostatic and bactericidal in vivo efficacies at an s.c. administration of 4 and 100 mg/kg bid, respectively; these efficacies were similar to those of vancomycin at 4 and 20 mg/kg bid, respectively. The present findings indicate that coralmycin A has great potential as a new class of antibiotic for treating infections caused by multidrug-resistant Gram-positive bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA