Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1864(6 Pt A): 2097-2107, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29601978

RESUMO

Prolactin regulatory element-binding (PREB) protein is a transcription factor that regulates prolactin (PRL) gene expression. PRL, also known as luteotropic hormone or luteotropin, is well known for its role in producing milk. However, the role of PREB, in terms of hepatic glucose metabolism, is not well elucidated. Here, we observed expression of Preb in the mouse liver, in connection with glucose homeostasis. Morevoer, Preb was downregulated in db/db, ob/ob and high-fat diet-induced obese (DIO) mice, concurrent with upregulation of the liver genes glucose-6-phosphatase (G6pc) and phosphoenolpyruvate carboxykinase-1 (Pck). Administration of adenovirus-Preb (Ad-Preb) to db/db, ob/ob, and DIO mice diminished glucose, insulin, and pyruvate tolerance, which analogously, were impaired in normal (C57BL/6) mice knocked down for Preb, via infection with Ad-shPreb (anti-Preb RNA), indicating Preb to be a negative regulator of liver gluconeogenic genes. We further demonstrate that Preb negatively influences gluconeogenic gene expression, by directly binding to their promoters at a prolactin core-binding element (PCBE). A better understanding of Preb gene expression, during the pathogenesis of hepatic insulin resistance, could ultimately provide new avenues for therapies for metabolic syndrome, obesity, and type-2 diabetes mellitus, disorders whose worldwide incidences are increasing drastically.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Gluconeogênese , Glucose/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fígado/metabolismo , Fatores de Transcrição/metabolismo , Animais , Glicemia , Proteínas de Ligação a DNA/genética , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Regulação para Baixo , Jejum , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Hepatócitos/metabolismo , Humanos , Insulina/metabolismo , Fígado/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/sangue , Obesidade/etiologia , Obesidade/metabolismo , Cultura Primária de Células , Prolactina/metabolismo , Regiões Promotoras Genéticas , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/genética , Regulação para Cima
2.
Biochem Biophys Res Commun ; 478(3): 1060-6, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27524233

RESUMO

Elongation of very long chain fatty acids protein 6 (ELOVL6), a rate-limiting enzyme for the elongation of saturated and monounsaturated fatty acids with 12, 14, and 16 carbons, plays a key role in energy metabolism and insulin sensitivity. Hepatic Elovl6 expression is upregulated in the fasting-refeeding response and in leptin-deficient ob/ob mice. Mouse Elovl6 has been shown to be a direct target of sterol regulatory element binding protein-1 (SREBP-1) in response to insulin. In the present study, we demonstrated that mouse and human Elovl6 expression is under the direct transcriptional control of carbohydrate response element binding protein (ChREBP), a mediator of glucose-induced gene expression. Serial deletion and site-directed mutagenesis studies revealed functional carbohydrate response elements (ChoREs) in the mouse and human Elovl6 promoters and gel shift assays and chromatin immunoprecipitation assays confirmed the binding of ChREBP to the Elovl6-ChoRE sites. In addition, the ectopic co-expression of ChREBP and SREBP-1c in HepG2 cells synergistically stimulated Elovl6 promoter activity and this synergistic activation was abolished by mutating the Elovl6 promoter ChoREs. Taken together, these results suggest that the synergistic action of ChREBP and SREBP-1c is necessary for the maximal induction of Elovl6 expression in the liver.


Assuntos
Acetiltransferases/genética , Regulação da Expressão Gênica , Fígado/metabolismo , Proteínas Nucleares/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Transcrição/metabolismo , Acetiltransferases/metabolismo , Animais , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Elongases de Ácidos Graxos , Comportamento Alimentar , Células Hep G2 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Ligação Proteica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos de Resposta/genética
3.
Biochem J ; 467(3): 453-60, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25695641

RESUMO

Insulin-like growth factor (IGF)-binding protein-2 (IGFBP-2), one of the most abundant circulating IGFBPs, is known to attenuate the biological action of IGF-1. Although the effect of IGFBP-2 in preventing metabolic disorders is well known, its regulatory mechanism remains unclear. In the present study, we demonstrated the transcriptional regulation of the Igfbp-2 gene by peroxisome-proliferator-activated receptor (PPAR) α in the liver. During fasting, both Igfbp-2 and PPARα expression levels were increased. Wy14643, a selective PPARα agonist, significantly induced Igfbp-2 gene expression in primary cultured hepatocytes. However, Igfbp-2 gene expression in Pparα null mice was not affected by fasting or Wy14643. In addition, through transient transfection and chromatin immunoprecipitation assay in fasted livers, we determined that PPARα bound to the putative PPAR-responsive element between -511 bp and -499 bp on the Igfbp-2 gene promoter, indicating that the Igfbp-2 gene transcription is activated directly by PPARα. To explore the role of PPARα in IGF-1 signalling, we treated primary cultured hepatocytes with Wy14643 and observed a decrease in the number of IGF-1 receptors (IGF-1Rs) and in Akt phosphorylation. No inhibition was observed in the hepatocytes isolated from Pparα null mice. These results suggest that PPARα controls IGF-1 signalling through the up-regulation of hepatic Igfbp-2 transcription during fasting and Wy14643 treatment.


Assuntos
Jejum/metabolismo , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Animais , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR alfa/deficiência , PPAR alfa/genética , PPAR gama/agonistas , Proliferadores de Peroxissomos/farmacologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rosiglitazona , Transdução de Sinais , Tiazolidinedionas/farmacologia , Regulação para Cima/efeitos dos fármacos
4.
Diabetologia ; 56(12): 2723-32, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24037087

RESUMO

AIMS/HYPOTHESIS: Thioredoxin-interacting protein (TXNIP) is upregulated in the hyperglycaemic state and represses glucose uptake, resulting in imbalanced glucose homeostasis. In this study, we propose a mechanism of how TXNIP impairs hepatic glucose tolerance at the transcriptional level. METHODS: We administered adenoviral Txnip (Ad-Txnip) to normal mice and performed intraperitoneal glucose tolerance tests (IPGTT), insulin tolerance tests (ITT) and pyruvate tolerance tests (PTT). After Ad-Txnip administration, the expression of genes involved in glucose metabolism, including G6pc and Gck, was analysed using quantitative real-time PCR and western blot. To understand the increased G6pc expression in liver resulting from Txnip overexpression, we performed pull-down assays for TXNIP and small heterodimer partner (SHP). Luciferase reporter assays and chromatin immunoprecipitation using the Txnip promoter were performed to elucidate the interrelationship between carbohydrate response element-binding protein (ChREBP) and transcription factor E3 (TFE3) in the regulation of Txnip expression. RESULTS: Overabundance of TXNIP resulted in impaired glucose, insulin and pyruvate tolerance in normal mice. Ad-Txnip transduction upregulated G6pc expression and caused a decrease in Gck levels in the liver of normal mice and primary hepatocytes. TXNIP increased G6pc expression by forming a complex with SHP, which is known to be a negative modulator of gluconeogenesis. Txnip expression in mouse models of diabetes was decreased by Ad-Tfe3 administration, suggesting that TFE3 may play a negative role through competition with ChREBP at the E-box of the Txnip promoter. CONCLUSIONS/INTERPRETATION: We demonstrated that TXNIP impairs glucose and insulin tolerance in mice by upregulating G6pc through interaction with SHP.


Assuntos
Proteínas de Transporte/metabolismo , Diabetes Mellitus Experimental/metabolismo , Gluconeogênese , Intolerância à Glucose/metabolismo , Glucose-6-Fosfatase/metabolismo , Fígado/metabolismo , Tiorredoxinas/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Western Blotting , Proteínas de Transporte/genética , Imunoprecipitação da Cromatina , Teste de Tolerância a Glucose , Glucose-6-Fosfatase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase em Tempo Real , Tiorredoxinas/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Regulação para Cima
5.
J Biol Chem ; 286(2): 1157-64, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21081500

RESUMO

Glucose-6-phosphatase (G6Pase) is a key enzyme that is responsible for the production of glucose in the liver during fasting or in type 2 diabetes mellitus (T2DM). During fasting or in T2DM, peroxisome proliferator-activated receptor α (PPARα) is activated, which may contribute to increased hepatic glucose output. However, the mechanism by which PPARα up-regulates hepatic G6Pase gene expression in these states is not well understood. We evaluated the mechanism by which PPARα up-regulates hepatic G6Pase gene expression in fasting and T2DM states. In PPARα-null mice, both hepatic G6Pase and phosphoenolpyruvate carboxykinase levels were not increased in the fasting state. Moreover, treatment of primary cultured hepatocytes with Wy14,643 or fenofibrate increased the G6Pase mRNA level. In addition, we have localized and characterized a PPAR-responsive element in the promoter region of the G6Pase gene. Chromatin immunoprecipitation (ChIP) assay revealed that PPARα binding to the putative PPAR-responsive element of the G6Pase promoter was increased in fasted wild-type mice and db/db mice. These results indicate that PPARα is responsible for glucose production through the up-regulation of hepatic G6Pase gene expression during fasting or T2DM animal models.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Regulação Enzimológica da Expressão Gênica , Glucose-6-Fosfatase/genética , PPAR alfa/metabolismo , Animais , Diabetes Mellitus Tipo 2/genética , Modelos Animais de Doenças , Ingestão de Alimentos/fisiologia , Jejum/fisiologia , Gluconeogênese/fisiologia , Células Hep G2 , Humanos , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , PPAR alfa/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Regiões Promotoras Genéticas/fisiologia , RNA Mensageiro/metabolismo , Regulação para Cima/fisiologia
6.
Biochem Biophys Res Commun ; 403(3-4): 329-34, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-21078299

RESUMO

During a state of fasting, the blood glucose level is maintained by hepatic gluconeogenesis. SIRT1 is an important metabolic regulator during nutrient deprivation and the liver-specific knockdown of SIRT1 resulted in decreased glucose production. We hypothesize that SIRT1 is responsible for the upregulation of insulin-suppressed gluconeogenic genes through the deacetylation of FOXO1. Treatment of primary cultured hepatocytes with resveratrol increased insulin-repressed PEPCK and G6Pase mRNA levels, which depend on SIRT1 activity. We found that the resveratrol treatment resulted in a decrease in the phosphorylation of Akt and FOXO1, which are independent of SIRT1 action. Fluorescence microscopy revealed that resveratrol caused the nuclear localization of FOXO1. In the nucleus, FOXO1 is deacetylated by SIRT1, which might make it more accessible to the IRE of the PEPCK and G6Pase promoter, causing an increase in their gene expression. Our results indicate that resveratrol upregulates the expression of gluconeogenic genes by attenuating insulin signaling and by deacetylating FOXO1, which are SIRT1-independent in the cytosol and SIRT1-dependent in the nucleus, respectively.


Assuntos
Antioxidantes/farmacologia , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica/efeitos dos fármacos , Gluconeogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Estilbenos/farmacologia , Animais , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Gluconeogênese/genética , Humanos , Fígado/metabolismo , Fosforilação , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Resveratrol , Sirtuína 1/genética , Sirtuína 1/metabolismo , Regulação para Cima
7.
Biochem J ; 417(1): 313-22, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18774944

RESUMO

KLF5 (Krüppel-like factor 5) is a zinc-finger transcription factor that plays a critical role in the regulation of cellular signalling involved in cell proliferation, differentiation and oncogenesis. In the present study, we showed that KLF5 acts as a key regulator controlling the expression of FASN (fatty acid synthase) through an interaction with SREBP-1 (sterol-regulatory-element-binding protein-1) in the androgen-dependent LNCaP prostate cancer cell line. The mRNA level of KLF5 increased when cells were treated with a synthetic androgen, R1881. Furthermore, KLF5 bound to SREBP-1 and enhanced the SREBP-1-mediated increase in FASN promoter activity. The results also demonstrated that the expression of KLF5 in LNCaP prostate cancer cells enhanced FASN expression, whereas silencing of KLF5 by small interfering RNA down-regulated FASN expression. The proximal promoter region and the first intron of the FASN gene contain multiple CACCC elements that mediate the transcriptional regulation of the gene by KLF5. However, other lipogenic and cholesterogenic genes, such as those encoding acetyl-CoA carboxylase, ATP-citrate lyase, the LDL (low-density lipoprotein) receptor, HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) synthase and HMG-CoA reductase are irresponsive to KLF5 expression, owing to the absence of CACCC elements in their promoter regions. Taken together, these results suggest that the FASN gene is activated by the synergistic action of KLF5 and SREBP-1, which was induced by androgen in androgen-dependent prostate cancer cells.


Assuntos
Androgênios/farmacologia , Ácido Graxo Sintases/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Western Blotting , Linhagem Celular Tumoral , Ácido Graxo Sintases/genética , Expressão Gênica/efeitos dos fármacos , Humanos , Imunoprecipitação , Íntrons/genética , Fatores de Transcrição Kruppel-Like/genética , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ligação Proteica/efeitos dos fármacos , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
8.
Sensors (Basel) ; 10(5): 5031-53, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22399922

RESUMO

Pancreatic ß-cells and the liver play a key role in glucose homeostasis. After a meal or in a state of hyperglycemia, glucose is transported into the ß-cells or hepatocytes where it is metabolized. In the ß-cells, glucose is metabolized to increase the ATP:ADP ratio, resulting in the secretion of insulin stored in the vesicle. In the hepatocytes, glucose is metabolized to CO(2), fatty acids or stored as glycogen. In these cells, solute carrier family 2 (SLC2A2) and glucokinase play a key role in sensing and uptaking glucose. Dysfunction of these proteins results in the hyperglycemia which is one of the characteristics of type 2 diabetes mellitus (T2DM). Thus, studies on the molecular mechanisms of their transcriptional regulations are important in understanding pathogenesis and combating T2DM. In this paper, we will review a recent update on the progress of gene regulation of glucose sensors in the liver and ß-cells.


Assuntos
Regulação da Expressão Gênica , Glucoquinase/genética , Transportador de Glucose Tipo 2/genética , Glucose/metabolismo , Fígado/metabolismo , Transcrição Gênica , Animais , Glucoquinase/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Fígado/enzimologia
9.
Biochim Biophys Acta Gene Regul Mech ; 1862(6): 643-656, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30959128

RESUMO

Gluconeogenesis is essential for blood glucose homeostasis during fasting and is regulated by various enzymes, which are encoded by gluconeogenic genes. Those genes are controlled by various transcription factors. Zinc finger and BTB domain-containing 7c (Zbtb7c, also called Kr-pok) is a BTB-POZ family transcription factor with proto-oncogenic activity. Previous findings have indicated that Zbtb7c is involved in the regulation of fatty acid biosynthesis, suggesting an involvement also in primary metabolism. We found here that fasting induced Zbtb7c expression in the mouse liver and in primary liver hepatocytes. We also observed that Zbtb7c-knockout mice have decreased blood glucose levels, so we investigated whether Zbtb7c plays a role in gluconeogenesis. Indeed, differential gene expression analysis of Zbtb7c-knockout versus wild type mouse livers showed downregulated transcription of gluconeogenic genes encoding the glucose 6-phosphatase catalytic subunit (G6pc) and phosphoenolpyruvate carboxykinase 1 (Pck1), while Zbtb7c expression upregulated these two genes, under fasting conditions. Mechanistically, we found that when complexed with histone deacetylase 3 (Hdac3), Zbtb7c binds insulin response elements (IREs) within the G6pc and Pck1 promoters. Moreover, complexed Zbtb7c deacetylated forkhead box O1 (Foxo1), thereby increasing Foxo1 binding to the G6pc and Pck1 IREs, resulting in their transcriptional activation. These results demonstrate Zbtb7c to be a crucial metabolic regulator of blood glucose homeostasis, during mammalian fasting.


Assuntos
Jejum , Regulação da Expressão Gênica , Gluconeogênese/fisiologia , Glucose-6-Fosfatase/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Proteínas/metabolismo , Fatores de Transcrição/metabolismo , Dedos de Zinco/fisiologia , Animais , Glicemia , Proteínas de Ligação a DNA/metabolismo , Ácidos Graxos/biossíntese , Proteína Forkhead Box O1/metabolismo , Gluconeogênese/genética , Glucose/metabolismo , Glucose-6-Fosfatase/metabolismo , Células HEK293 , Células Hep G2 , Hepatócitos/metabolismo , Histona Desacetilases/metabolismo , Homeostase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Mutagênese Sítio-Dirigida , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Regiões Promotoras Genéticas , Proteínas/genética , Transcriptoma , Dedos de Zinco/genética
10.
Diabetes Metab J ; 42(6): 465-471, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30398040

RESUMO

My professional journey to understand the glucose homeostasis began in the 1990s, starting from cloning of the promoter region of glucose transporter type 2 (GLUT2) gene that led us to establish research foundation of my group. When I was a graduate student, I simply thought that hyperglycemia, a typical clinical manifestation of type 2 diabetes mellitus (T2DM), could be caused by a defect in the glucose transport system in the body. Thus, if a molecular mechanism controlling glucose transport system could be understood, treatment of T2DM could be possible. In the early 70s, hyperglycemia was thought to develop primarily due to a defect in the muscle and adipose tissue; thus, muscle/adipose tissue type glucose transporter (GLUT4) became a major research interest in the diabetology. However, glucose utilization occurs not only in muscle/adipose tissue but also in liver and brain. Thus, I was interested in the hepatic glucose transport system, where glucose storage and release are the most actively occurring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA