Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 16(4): e1007702, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32315315

RESUMO

The growth of the malaria parasite Plasmodium falciparum in human blood causes all the symptoms of malaria. To proliferate, non-motile parasites must have access to susceptible red blood cells, which they invade using pairs of parasite ligands and host receptors that define invasion pathways. Parasites can switch invasion pathways, and while this flexibility is thought to facilitate immune evasion, it may also reflect the heterogeneity of red blood cell surfaces within and between hosts. Host genetic background affects red blood cell structure, for example, and red blood cells also undergo dramatic changes in morphology and receptor density as they age. The in vivo consequences of both the accessibility of susceptible cells, and their heterogeneous susceptibility, remain unclear. Here, we measured invasion of laboratory strains of P. falciparum relying on distinct invasion pathways into red blood cells of different ages. We estimated invasion efficiency while accounting for red blood cell accessibility to parasites. This approach revealed different tradeoffs made by parasite strains between the fraction of cells they can invade and their invasion rate into them, and we distinguish "specialist" strains from "generalist" strains in this context. We developed a mathematical model to show that generalist strains would lead to higher peak parasitemias in vivo compared to specialist strains with similar overall proliferation rates. Thus, the ecology of red blood cells may play a key role in determining the rate of P. falciparum parasite proliferation and malaria virulence.


Assuntos
Eritrócitos/fisiologia , Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Animais , Contagem de Eritrócitos , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Malária/parasitologia , Modelos Teóricos , Parasitos , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade
2.
Malar J ; 19(1): 320, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883282

RESUMO

BACKGROUND: Despite several control interventions resulting in a considerable decrease in malaria prevalence in the Union of the Comoros, the disease remains a public health problem with high transmission in Grande Comore compared to neighbouring islands. In this country, only a few studies investigating the genetic diversity of Plasmodium falciparum have been performed so far. For this reason, this study aims to examine the genetic diversity of P. falciparum by studying samples collected in Grande Comore in 2012 and 2013, using merozoite surface protein 1 (msp1), merozoite surface protein 2 (msp2) and single nucleotide polymorphism (SNP) genetic markers. METHODS: A total of 162 positive rapid diagnostic test (RDT) samples from Grande Comore were used to extract parasite DNA. Allelic families K1, Mad20 and RO33 of the msp1 gene as well as allelic families IC3D7 and FC37 of the msp2 gene were determined by using nested PCR. Additionally, 50 out of 151 samples were genotyped to study 24 SNPs by using high resolution melting (HRM). RESULTS: Two allelic families were predominant, the K1 family of msp1 gene (55%) and the FC27 family of msp2 gene (47.4%). Among 50 samples genotyped for 24 SNPs, 42 (84%) yielded interpretable results. Out of these isolates, 36 (85%) were genetically unique and 6 (15%) grouped into two clusters. The genetic diversity of P. falciparum calculated from msp1 and msp2 genes and SNPs was 0.82 and 0.61, respectively. CONCLUSION: In summary, a large genetic diversity of P. falciparum was observed in Grande Comore. This may favour persistence of malaria and might be one of the reasons for the high malaria transmission compared to neighbouring islands. Further surveillance of P. falciparum isolates, mainly through environmental management and vector control, is warranted until complete elimination is attained.


Assuntos
Antígenos de Protozoários/genética , Variação Genética , Proteína 1 de Superfície de Merozoito/genética , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/genética , Comores , Reação em Cadeia da Polimerase
3.
Malar J ; 18(1): 239, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311552

RESUMO

BACKGROUND: The Plasmodium falciparum reticulocyte binding protein homolog 2b (PfRh2b) is an important P. falciparum merozoite ligand that mediates invasion of erythrocytes by interacting with a chymotrypsin-sensitive "receptor Z". A large deletion polymorphism is found in the c-terminal ectodomain of this protein in many countries around the world, resulting in a truncated, but expressed protein. The varying frequencies by region suggest that there could be region specific immune selection at this locus. Therefore, this study was designed to determine temporal changes in the PfRh2b deletion polymorphism in infected individuals from Thiès (Senegal) and Western Gambia (The Gambia). It was also sought to determine the selective pressures acting at this locus and whether prevalence of the deletion in isolates genotyped by a 24-SNP molecular barcode is linked to background genotype or whether there might be independent selection acting at this locus. METHODS: Infected blood samples were sourced from archives of previous studies conducted between 2007 and 2013 at SLAP clinic in Thiès and from 1984 to 2013 in Western Gambia by MRC Unit at LSHTM, The Gambia. A total of 1380 samples were screened for the dimorphic alleles of the PfRh2b using semi-nested Polymerase Chain Reaction PCR. Samples from Thiès were previously barcoded. RESULTS: In Thiès, a consistent trend of decreasing prevalence of the PfRh2b deletion over time was observed: from 66.54% in 2007 and to 38.1% in 2013. In contrast, in Western Gambia, the frequency of the deletion fluctuated over time; it increased between 1984 and 2005 from (58.04%) to (69.33%) and decreased to 47.47% in 2007. Between 2007 and 2012, the prevalence of this deletion increased significantly from 47.47 to 83.02% and finally declined significantly to 57.94% in 2013. Association between the presence of this deletion and age was found in Thiès, however, not in Western Gambia. For the majority of isolates, the PfRh2b alleles could be tracked with specific 24-SNP barcoded genotype, indicating a lack of independent selection at this locus. CONCLUSION: PfRh2b deletion was found in the two countries with varying prevalence during the study period. However, these temporal and spatial variations could be an obstacle to the implementation of this protein as a potential vaccine candidate.


Assuntos
Sequência de Bases , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/genética , Seleção Genética , Deleção de Sequência , Gâmbia , Humanos , Estações do Ano , Senegal
4.
J Infect Dis ; 216(2): 267-275, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28605544

RESUMO

Background: Plasmodium falciparum reticulocyte-binding protein homologue 2b (PfRh2b) is an invasion ligand that is a potential blood-stage vaccine candidate antigen; however, a naturally occurring deletion within an immunogenic domain is present at high frequencies in Africa and has been associated with alternative invasion pathway usage. Standardized tools that provide antigenic specificity in in vitro assays are needed to functionally assess the neutralizing potential of humoral responses against malaria vaccine candidate antigens. Methods: Transgenic parasite lines were generated to express the PfRh2b deletion. Total immunoglobulin G (IgG) from individuals residing in malaria-endemic regions in Tanzania, Senegal, and Mali were used in growth inhibition assays with transgenic parasite lines. Results: While the PfRh2b deletion transgenic line showed no change in invasion pathway utilization compared to the wild-type in the absence of specific antibodies, it outgrew wild-type controls in competitive growth experiments. Inhibition differences with total IgG were observed in the different endemic sites, ranging from allele-specific inhibition to allele-independent inhibitory immune responses. Conclusions: The PfRh2b deletion may allow the parasite to escape neutralizing antibody responses in some regions. This difference in geographical inhibition was revealed using transgenic methodologies, which provide valuable tools for functionally assessing neutralizing antibodies against vaccine-candidate antigens in regions with varying malaria endemicity.


Assuntos
Anticorpos Antiprotozoários/sangue , Malária/parasitologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Alelos , Animais , Animais Geneticamente Modificados , Anticorpos Neutralizantes/sangue , Eritrócitos/parasitologia , Deleção de Genes , Geografia , Humanos , Imunoglobulina G/sangue , Malária/imunologia , Mali , Plasmodium falciparum , Senegal , Tanzânia
5.
Infect Immun ; 85(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28760933

RESUMO

Plasmodium falciparum, the parasite that causes the deadliest form of malaria, has evolved multiple proteins known as invasion ligands that bind to specific erythrocyte receptors to facilitate invasion of human erythrocytes. The EBA-175/glycophorin A (GPA) and Rh5/basigin ligand-receptor interactions, referred to as invasion pathways, have been the subject of intense study. In this study, we focused on the less-characterized sialic acid-containing receptors glycophorin B (GPB) and glycophorin C (GPC). Through bioinformatic analysis, we identified extensive variation in glycophorin B (GYPB) transcript levels in individuals from Benin, suggesting selection from malaria pressure. To elucidate the importance of the GPB and GPC receptors relative to the well-described EBA-175/GPA invasion pathway, we used an ex vivo erythrocyte culture system to decrease expression of GPA, GPB, or GPC via lentiviral short hairpin RNA transduction of erythroid progenitor cells, with global surface proteomic profiling. We assessed the efficiency of parasite invasion into knockdown cells using a panel of wild-type P. falciparum laboratory strains and invasion ligand knockout lines, as well as P. falciparum Senegalese clinical isolates and a short-term-culture-adapted strain. For this, we optimized an invasion assay suitable for use with small numbers of erythrocytes. We found that all laboratory strains and the majority of field strains tested were dependent on GPB expression level for invasion. The collective data suggest that the GPA and GPB receptors are of greater importance than the GPC receptor, supporting a hierarchy of erythrocyte receptor usage in P. falciparum.


Assuntos
Eritrócitos/fisiologia , Eritrócitos/parasitologia , Glicoforinas/genética , Plasmodium falciparum/patogenicidade , Biologia Computacional , Glicoforinas/metabolismo , Humanos , Ligantes , Plasmodium falciparum/imunologia , Plasmodium falciparum/fisiologia , Ligação Proteica , Proteômica , Receptores de Superfície Celular/metabolismo
6.
Mol Ecol ; 26(11): 2880-2894, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28214367

RESUMO

To determine whether the major human malaria parasite Plasmodium falciparum exhibits fragmented population structure or local adaptation at the northern limit of its African distribution where the dry Sahel zone meets the Sahara, samples were collected from diverse locations within Mauritania over a range of ~1000 km. Microsatellite genotypes were obtained for 203 clinical infection samples from eight locations, and Illumina paired-end sequences were obtained to yield high coverage genomewide single nucleotide polymorphism (SNP) data for 65 clinical infection samples from four locations. Most infections contained single parasite genotypes, reflecting low rates of transmission and superinfection locally, in contrast to the situation seen in population samples from countries further south. A minority of infections shared related or identical genotypes locally, indicating some repeated transmission of parasite clones without recombination. This caused some multilocus linkage disequilibrium and local divergence, but aside from the effect of repeated genotypes there was minimal differentiation between locations. Several chromosomal regions had elevated integrated haplotype scores (|iHS|) indicating recent selection, including those containing drug resistance genes. A genomewide FST scan comparison with previous sequence data from an area in West Africa with higher infection endemicity indicates that regional gene flow prevents genetic isolation, but revealed allele frequency differentiation at three drug resistance loci and an erythrocyte invasion ligand gene. Contrast of extended haplotype signatures revealed none to be unique to Mauritania. Discrete foci of infection on the edge of the Sahara are genetically highly connected to the wider continental parasite population, and local elimination would be difficult to achieve without very substantial reduction in malaria throughout the region.


Assuntos
Genética Populacional , Plasmodium falciparum/genética , África do Norte , África Ocidental , Animais , Fluxo Gênico , Frequência do Gene , Genótipo , Haplótipos , Humanos , Malária Falciparum/parasitologia , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Seleção Genética
7.
Malar J ; 16(1): 153, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28420422

RESUMO

BACKGROUND: Emergence and spread of drug resistance to every anti-malarial used to date, creates an urgent need for development of sensitive, specific and field-deployable molecular tools for detection and surveillance of validated drug resistance markers. Such tools would allow early detection of mutations in resistance loci. The aim of this study was to compare common population signatures and drug resistance marker frequencies between two populations with different levels of malaria endemicity and history of anti-malarial drug use: Tanzania and Sénégal. This was accomplished by implementing a high resolution melting assay to study molecular markers of drug resistance as compared to polymerase chain reaction-restriction fragment length polymorphism (PCR/RFLP) methodology. METHODS: Fifty blood samples were collected each from a lowly malaria endemic site (Sénégal), and a highly malaria endemic site (Tanzania) from patients presenting with uncomplicated Plasmodium falciparum malaria at clinic. Data representing the DHFR were derived using both PCR-RFLP and HRM assay; while genotyping data representing the DHPS were evaluated in Senegal and Tanzania using HRM. Msp genotyping analysis was used to characterize the multiplicity of infection in both countries. RESULTS: A high prevalence of samples harbouring mutant DHFR alleles was observed in both population using both genotyping techniques. HRM was better able to detect mixed alleles compared to PCR/RFLP for DHFR codon 51 in Tanzania; and only HRM was able to detect mixed infections from Senegal. A high prevalence of mutant alleles in DHFR (codons 51, 59, 108) and DHPS (codon 437) were found among samples from Sénégal while no mutations were observed at DHPS codons 540 and 581, from both countries. Overall, the frequency of samples harbouring either a single DHFR mutation (S108N) or double mutation in DHFR (C59R/S108N) was greater in Sénégal compared to Tanzania. CONCLUSION: Here the results demonstrate that HRM is a rapid, sensitive, and field-deployable alternative technique to PCR-RFLP genotyping that is useful in populations harbouring more than one parasite genome (polygenomic infections). In this study, a high levels of resistance polymorphisms was observed in both dhfr and dhps, among samples from Tanzania and Sénégal. A routine monitoring by molecular markers can be a way to detect emergence of resistance involving a change in the treatment policy.


Assuntos
Di-Hidropteroato Sintase/genética , Resistência a Medicamentos , Técnicas de Diagnóstico Molecular/métodos , Plasmodium/enzimologia , Sistemas Automatizados de Assistência Junto ao Leito , Tetra-Hidrofolato Desidrogenase/genética , Temperatura de Transição , Adolescente , Criança , Pré-Escolar , Genótipo , Técnicas de Genotipagem/métodos , Humanos , Malária Falciparum/parasitologia , Plasmodium/efeitos dos fármacos , Plasmodium/genética , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Senegal , Tanzânia , Adulto Jovem
8.
Malar J ; 15: 80, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26861780

RESUMO

BACKGROUND: Plasmodium vivax is very rarely seen in West Africa, although specific detection methods are not widely applied in the region, and it is now considered to be absent from North Africa. However, this parasite species has recently been reported to account for most malaria cases in Nouakchott, the capital of Mauritania, which is a large country at the interface of sub-Saharan West Africa and the Maghreb region in northwest Africa. METHODS: To determine the distribution of malaria parasite species throughout Mauritania, malaria cases were sampled in 2012 and 2013 from health facilities in 12 different areas. These sampling sites were located in eight major administrative regions of the country, within different parts of the Sahara and Sahel zones. Blood spots from finger-prick samples of malaria cases were processed to identify parasite DNA by species-specific PCR. RESULTS: Out of 472 malaria cases examined, 163 (34.5 %) had P. vivax alone, 296 (62.7 %) Plasmodium falciparum alone, and 13 (2.8 %) had mixed P. falciparum and P. vivax infection. All cases were negative for Plasmodium malariae and Plasmodium ovale. The parasite species distribution showed a broad spectrum, P. vivax being detected at six of the different sites, in five of the country's major administrative regions (Tiris Zemmour, Tagant, Brakna, Assaba, and the capital Nouakchott). Most cases in Nouakchott were due to P. vivax, although proportions vary significantly among different health facilities in the city. In the northern town of Zouérat, all cases were due to P. vivax, whereas almost all cases in the south of the country were due to P. falciparum. All P. vivax cases tested were Duffy blood group positive. CONCLUSIONS: It is important that P. vivax is recognized to be a widespread cause of malaria in Mauritania, occurring in diverse regions. This should be noted by the World Health Organization, as it has significant implications for diagnosis, treatment and control of malaria in the northwestern part of Africa.


Assuntos
Malária Vivax/epidemiologia , África Ocidental/epidemiologia , Geografia , Humanos , Mauritânia/epidemiologia , Plasmodium falciparum/fisiologia , Plasmodium malariae/fisiologia , Plasmodium ovale/fisiologia , Plasmodium vivax/fisiologia
9.
Infect Immun ; 83(6): 2575-82, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25870227

RESUMO

Plasmodium falciparum merozoites use diverse alternative erythrocyte receptors for invasion and variably express cognate ligands encoded by the erythrocyte binding antigen (eba) and reticulocyte binding-like homologue (Rh) gene families. Previous analyses conducted on parasites from single populations in areas of endemicity revealed a wide spectrum of invasion phenotypes and expression profiles, although comparisons across studies have been limited by the use of different protocols. For direct comparisons within and among populations, clinical isolates from three different West African sites of endemicity (in Ghana, Guinea, and Senegal) were cryopreserved and cultured ex vivo after thawing in a single laboratory to assay invasion of target erythrocytes pretreated with enzymes affecting receptor subsets. Complete invasion assay data from 67 isolates showed no differences among the populations in the broad range of phenotypes measured by neuraminidase treatment (overall mean, 40.6% inhibition) or trypsin treatment (overall mean, 83.3% inhibition). The effects of chymotrypsin treatment (overall mean, 79.2% inhibition) showed heterogeneity across populations (Kruskall-Wallis P = 0.023), although the full phenotypic range was seen in each. Schizont-stage transcript data for a panel of 8 invasion ligand genes (eba175, eba140, eba181, Rh1, Rh2a, Rh2b, Rh4, and Rh5) were obtained for 37 isolates, showing similar ranges of variation in each population except that eba175 levels tended to be higher in parasites from Ghana than in those from Senegal (whereas levels of eba181 and Rh2b were lower in parasites from Ghana). The broad diversity in invasion phenotypes and gene expression seen within each local population, with minimal differences among them, is consistent with a hypothesis of immune selection maintaining parasite variation.


Assuntos
Eritrócitos/parasitologia , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Merozoítos/metabolismo , Plasmodium falciparum/fisiologia , Criança , Pré-Escolar , Doenças Endêmicas , Regulação da Expressão Gênica , Gana/epidemiologia , Guiné/epidemiologia , Humanos , Lactente , Senegal/epidemiologia
10.
Infect Immun ; 83(1): 276-85, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25368109

RESUMO

As the intensity of malaria transmission has declined, Plasmodium falciparum parasite populations have displayed decreased clonal diversity resulting from the emergence of many parasites with common genetic signatures (CGS). We have monitored such CGS parasite clusters from 2006 to 2013 in Thiès, Senegal, using the molecular barcode. The first, and one of the largest observed clusters of CGS parasites, was present in 24% of clinical isolates in 2008, declined to 3.4% of clinical isolates in 2009, and then disappeared. To begin to explore the relationship between the immune responses of the population and the emergence and decline of specific parasite genotypes, we have determined whether antibodies to CGS parasites correlate with their prevalence. We measured (i) antibodies capable of inhibiting parasite growth in culture and (ii) antibodies recognizing the surfaces of infected erythrocytes (RBCs). IgG obtained from volunteers in 2009 showed increased reactivity to the surfaces of CGS-parasitized erythrocytes over IgG from 2008. Since P. falciparum EMP-1 (PfEMP-1) is a major variant surface antigen, we used var Ups quantitative reverse transcription-PCR (qRT-PCR) and sequencing with degenerate DBL1α domain primers to characterize the var genes expressed by CGS parasites after short-term in vitro culture. CGS parasites show upregulation of UpsA var genes and 2-cysteine-containing PfEMP-1 molecules and express the same dominant var transcript. Our work indicates that the CGS parasites in this cluster express similar var genes, more than would be expected by chance in the population, and that there is year-to-year variation in immune recognition of surface antigens on CGS parasite-infected erythrocytes. This study lays the groundwork for detailed investigations of the mechanisms driving the expansion or contraction of specific parasite clones in the population.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Antígenos de Protozoários/genética , Análise por Conglomerados , Código de Barras de DNA Taxonômico , Humanos , Imunoglobulina G/sangue , Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Plasmodium falciparum/classificação , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Senegal/epidemiologia
11.
Malar J ; 14: 373, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26415927

RESUMO

BACKGROUND: The World Health Organization has recommended rapid diagnostic tests (RDTs) for use in the diagnosis of suspected malaria cases. In addition to providing quick and accurate detection of Plasmodium parasite proteins in the blood, these tests can be used as sources of DNA for further genetic studies. As sulfadoxine-pyrimethamine is used currently for intermittent presumptive treatment of pregnant women in both Senegal and in the Comoros Islands, resistance mutations in the dhfr and dhps genes were investigated using DNA extracted from RDTs. METHODS: The proximal portion of the nitrocellulose membrane of discarded RDTs was used for DNA extraction. This genomic DNA was amplified using HRM to genotype the molecular markers involved in resistance to sulfadoxine-pyrimethamine: dhfr (51, 59, 108, and 164) and dhps (436, 437, 540, 581, and 613). Additionally, the msp1 and msp2 genes were amplified to determine the average clonality between Grande-Comore (Comoros) and Thiès (Senegal). RESULTS: A total of 201 samples were successfully genotyped at all codons by HRM; whereas, in 200 msp1 and msp2 genes were successfully amplified and genotyped by nested PCR. A high prevalence of resistance mutations were observed in the dhfr gene at codons 51, 59, and 108 as well as in the dhps gene at codons 437 and 436. A novel mutant in dhps at codon positions 436Y/437A was observed. The dhfr I164L codon and dhps K540 and dhps A581G codons had 100 % wild type alleles in all samples. CONCLUSION: The utility of field-collected RDTs was validated as a source of DNA for genetic studies interrogating frequencies of drug resistance mutations, using two different molecular methods (PCR and High Resolution Melting). RDTs should not be discarded after use as they can be a valuable source of DNA for genetic and epidemiological studies in sites where filter paper or venous blood collected samples are nonexistent.


Assuntos
DNA de Protozoário/genética , Resistência a Medicamentos/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Kit de Reagentes para Diagnóstico/parasitologia , Antimaláricos/farmacologia , Sequência de Bases , Comores/epidemiologia , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Dados de Sequência Molecular , Mutação/genética , Parasitologia , Prevalência , Proteínas de Protozoários/genética , Senegal/epidemiologia
12.
J Infect Dis ; 208(10): 1679-87, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23904294

RESUMO

Plasmodium falciparum is an intracellular protozoan parasite that infects erythrocytes and hepatocytes. The blood stage of its life cycle causes substantial morbidity and mortality associated with millions of infections each year, motivating an intensive search for potential components of a multi-subunit vaccine. In this study, we present data showing that antibodies from natural infections can recognize a recombinant form of the relatively conserved merozoite surface antigen, PfRH5. Furthermore, we performed invasion inhibition assays on clinical isolates and laboratory strains of P. falciparum in the presence of affinity purified antibodies to RH5 and show that these antibodies can inhibit invasion in vitro.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Proteínas de Transporte/imunologia , Malária Falciparum/imunologia , Merozoítos/imunologia , Plasmodium falciparum/imunologia , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/química , Proteínas de Transporte/química , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia
13.
Front Microbiol ; 15: 1362714, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655084

RESUMO

Introduction: Acute febrile illnesses (AFI) in developing tropical and sub-tropical nations are challenging to diagnose due to the numerous causes and non-specific symptoms. The proliferation of rapid diagnostic testing and successful control campaigns against malaria have revealed that non-Plasmodium pathogens still contribute significantly to AFI burden. Thus, a more complete understanding of local trends and potential causes is important for selecting the correct treatment course, which in turn will reduce morbidity and mortality. Next-generation sequencing (NGS) in a laboratory setting can be used to identify known and novel pathogens in individuals with AFI. Methods: In this study, plasma was collected from 228 febrile patients tested negative for malaria at clinics across Senegal from 2020-2022. Total nucleic acids were extracted and converted to metagenomic NGS libraries. To identify viral pathogens, especially those present at low concentration, an aliquot of each library was processed with a viral enrichment panel and sequenced. Corresponding metagenomic libraries were also sequenced to identify non-viral pathogens. Results and Discussion: Sequencing reads for pathogens with a possible link to febrile illness were identified in 51/228 specimens, including (but not limited to): Borrelia crocidurae (N = 7), West Nile virus (N = 3), Rickettsia felis (N = 2), Bartonella quintana (N = 1), human herpesvirus 8 (N = 1), and Saffold virus (N = 1). Reads corresponding to Plasmodium falciparum were detected in 19 specimens, though their presence in the cohort was likely due to user error of rapid diagnostic testing or incorrect specimen segregation at the clinics. Mosquito-borne pathogens were typically detected just after the conclusion of the rainy season, while tick-borne pathogens were mostly detected before the rainy season. The three West Nile virus strains were phylogenetically characterized and shown to be related to both European and North American clades. Surveys such as this will increase the understanding of the potential causes of non-malarial AFI, which may help inform diagnostic and treatment options for clinicians who provide care to patients in Senegal.

14.
Microb Genom ; 9(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37204422

RESUMO

Experimental studies on the biology of malaria parasites have mostly been based on laboratory-adapted lines, but there is limited understanding of how these may differ from parasites in natural infections. Loss-of-function mutants have previously been shown to emerge during culture of some Plasmodium falciparum clinical isolates in analyses focusing on single-genotype infections. The present study included a broader array of isolates, mostly representing multiple-genotype infections, which are more typical in areas where malaria is highly endemic. Genome sequence data from multiple time points over several months of culture adaptation of 28 West African isolates were analysed, including previously available sequences along with new genome sequences from additional isolates and time points. Some genetically complex isolates eventually became fixed over time to single surviving genotypes in culture, whereas others retained diversity, although proportions of genotypes varied over time. Drug resistance allele frequencies did not show overall directional changes, suggesting that resistance-associated costs are not the main causes of fitness differences among parasites in culture. Loss-of-function mutants emerged during culture in several of the multiple-genotype isolates, affecting genes (including AP2-HS, EPAC and SRPK1) for which loss-of-function mutants were previously seen to emerge in single-genotype isolates. Parasite clones were derived by limiting dilution from six of the isolates, and sequencing identified de novo variants not detected in the bulk isolate sequences. Interestingly, several of these were nonsense mutants and frameshifts disrupting the coding sequence of EPAC, the gene with the largest number of independent nonsense mutants previously identified in laboratory-adapted lines. Analysis of genomic identity by descent to explore relatedness among clones revealed co-occurring non-identical sibling parasites, illustrative of the natural genetic structure within endemic populations.


Assuntos
Malária , Plasmodium falciparum , Humanos , Plasmodium falciparum/genética , Genótipo , Genômica , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas Serina-Treonina Quinases/genética
15.
Malar J ; 11: 223, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22759447

RESUMO

BACKGROUND: Malaria parasite population genetic structure varies among areas of differing endemicity, but this has not been systematically studied across Plasmodium falciparum populations in Africa where most infections occur. METHODS: Ten polymorphic P. falciparum microsatellite loci were genotyped in 268 infections from eight locations in four West African countries (Republic of Guinea, Guinea Bissau, The Gambia and Senegal), spanning a highly endemic forested region in the south to a low endemic Sahelian region in the north. Analysis was performed on proportions of mixed genotype infections, genotypic diversity among isolates, multilocus standardized index of association, and inter-population differentiation. RESULTS: Each location had similar levels of pairwise genotypic diversity among isolates, although there were many more mixed parasite genotype infections in the south. Apart from a few isolates that were virtually identical, the multilocus index of association was not significant in any population. Genetic differentiation between populations was low (most pairwise F(ST) values < 0.03), and an overall test for isolation by distance was not significant. CONCLUSIONS: Although proportions of mixed genotype infections varied with endemicity as expected, population genetic structure was similar across the diverse sites. Very substantial reduction in transmission would be needed to cause fragmented or epidemic sub-structure in this region.


Assuntos
Doenças Endêmicas , Variação Genética , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Plasmodium falciparum/classificação , Plasmodium falciparum/genética , África Ocidental , Genótipo , Humanos , Repetições de Microssatélites , Plasmodium falciparum/isolamento & purificação
16.
Parasitol Res ; 111(4): 1541-6, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22706959

RESUMO

The goal of the present study was to assess the evolution of the in vitro chloroquine resistance and also the prevalence of pfcrt T76 and pfmdr1 Y86 mutations in Pikine from 2000 while chloroquine (CQ) was the first-line treatment of malaria to 2009 when artemisinin-based combination therapies (ACTs) are in use. We genotyped pfcrt K76T and pfmdr1 N86Y polymorphisms by PCR-RFLP and assessed in vitro CQ susceptibility by double-site enzyme-linked pLDH immunodetection (DELI) assay in Plasmodium falciparum isolates collected in Pikine, Senegal. The proportions of the pfcrt T76 allele in the light of the three different treatment policies were 72.4 % before CQ withdrawal (2000 to 2003), 47.2% while amodiaquine plus Fansidar was the first-line treatment (2004 to 2005), and 59.5 % since the ACT use was implemented (2006 to 2009). The prevalence of pfcrt T76 decreased significantly after CQ was stopped [X (2) = 6.54, P = 0.01 (2000-2003 versus 2004-2005)] and then slightly since ACTs have been implemented [X(2) = 1.12, P = 0.28 (2000-2003 versus 2006-2009)]. There were no significant differences on the prevalence of pfmdr1 Y86 throughout the three treatment policies. The DELI assay was carried out episodically in 2000 (n = 36), 2001 (n = 47), and 2009 (n = 37). The mean IC(50)s of the isolates to CQ in 2000 versus 2009 and 2001 versus 2009 are significantly different (P < 0.05). The Fisher exact test found a significant association between the presence of the pfcrt T76 mutant allele and in vitro resistance in 2000/2001 (P = 0.023), while in 2009 there were no association between both variables (P = 0.274). Mutant pfcrt T76 and pfmdr1 Y86 alleles and in vitro CQ-resistant strains are still circulating in Pikine. The official discontinuation of CQ use is not completely followed by its total withdrawal from private drug sellers, and the molecule still exerts pressure on local P. falciparum populations.


Assuntos
Cloroquina/farmacologia , Resistência a Medicamentos , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação de Sentido Incorreto , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Antimaláricos/farmacologia , DNA de Protozoário/genética , Uso de Medicamentos/estatística & dados numéricos , Frequência do Gene , Humanos , Malária Falciparum/parasitologia , Testes de Sensibilidade Parasitária , Plasmodium falciparum/isolamento & purificação , Mutação Puntual , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Senegal
17.
IJID Reg ; 2: 96-98, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35721431

RESUMO

This study investigated the seroprevalence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) immunoglobulin G (IgG) during the first pandemic wave in Senegal. The seroprevalence rate of SARS-CoV-2 IgG was assessed in 10 cities in Senegal by testing plasma from volunteers attending healthcare clinics for reasons unrelated to coronavirus disease 2019 (n=3231) between June and October 2020. The overall positivity rate was 20.4% and large geographical differences in seropositivity (6-41.9%) were observed, suggesting that the true number of infections was substantially higher than the official estimate of 8.5%.

18.
mBio ; 13(4): e0194822, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35950755

RESUMO

The merozoite surface protein MSPDBL2 of Plasmodium falciparum is under strong balancing selection and is a target of naturally acquired antibodies. Remarkably, MSPDBL2 is expressed in only a minority of mature schizonts of any cultured parasite line, and mspdbl2 gene transcription increases in response to overexpression of the gametocyte development inducer GDV1, so it is important to understand its natural expression. Here, MSPDBL2 in mature schizonts was analyzed in the first ex vivo culture cycle of 96 clinical isolates from 4 populations with various levels of infection endemicity in different West African countries, by immunofluorescence microscopy with antibodies against a conserved region of the protein. In most isolates, less than 1% of mature schizonts were positive for MSPDBL2, but the frequency distribution was highly skewed, as nine isolates had more than 3% schizonts positive and one had 73% positive. To investigate whether the expression of other gene loci correlated with MSPDBL2 expression, whole-transcriptome sequencing was performed on schizont-enriched material from 17 of the isolates with a wide range of proportions of schizonts positive. Transcripts of particular genes were highly significantly positively correlated with MSPDBL2 positivity in schizonts as well as with mspdbl2 gene transcript levels, showing overrepresentation of genes implicated previously as involved in gametocytogenesis but not including the gametocytogenesis master regulator ap2-g. Single-cell transcriptome analysis of a laboratory-adapted clone showed that most individual parasites expressing mspdbl2 did not express ap2-g, consistent with MSPDBL2 marking a developmental subpopulation that is distinct but likely to co-occur alongside sexual commitment. IMPORTANCE These findings contribute to understanding malaria parasite antigenic and developmental variation, focusing on the merozoite surface protein encoded by the single locus under strongest balancing selection. Analyzing the initial ex vivo generation of parasites grown from a wide sample of clinical infections, we show a unique and highly skewed pattern of natural expression frequencies of MSPDBL2, distinct from that of any other antigen. Bulk transcriptome analysis of a range of clinical isolates showed significant overrepresentation of sexual development genes among those positively correlated with MSPDBL2 protein and mspdbl2 gene expression, indicating the MSPDBL2-positive subpopulation to be often coincident with parasites developing sexually in preparation for transmission. Single-cell transcriptome data confirm the absence of a direct correlation with the ap2-g master regulator of sexual development, indicating that the MSPDBL2-positive subpopulation has a separate function in asexual survival and replication under conditions that promote terminal sexual differentiation.


Assuntos
Malária Falciparum , Parasitos , Animais , Malária Falciparum/parasitologia , Proteínas de Membrana/genética , Merozoítos , Parasitos/genética , Plasmodium falciparum , Proteínas de Protozoários/metabolismo , Esquizontes/genética , Transcriptoma
19.
Virus Evol ; 8(1): veac025, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371561

RESUMO

Molecular surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is growing in west Africa, especially in the Republic of Senegal. Here, we present a molecular epidemiology study of the early waves of SARS-CoV-2 infections in this country based on Bayesian phylogeographic approaches. Whereas the first wave in mid-2020 was characterized by a significant diversification of lineages and predominance of B.1.416, the second wave in late 2020 was composed primarily of B.1.1.420. Our results indicate that B.1.416 originated in Senegal and was exported mainly to Europe. In contrast, B.1.1.420 was introduced from Italy, gained fitness in Senegal, and then spread worldwide. Since both B.1.416 and B.1.1.420 lineages carry several positive selected mutations in the spike and nucleocapsid genes, each of which may explain their local dominance, their mutation profiles should be carefully monitored. As the pandemic continues to evolve, molecular surveillance in all regions of Africa will play a key role in stemming its spread.

20.
Sci Rep ; 11(1): 23644, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880295

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages that carry mutations in the spike gene are of concern for potential impact to treatment and prevention efforts. To monitor for new SARS-CoV-2 mutations, a panel of specimens were sequenced from both wave one (N = 96), and wave two (N = 117) of the pandemic in Senegal by whole genome next generation sequencing. Amongst these genomes, new combinations of SARS-CoV-2 spike mutations were identified, with E484K + N501T, L452R + N501Y, and L452M + S477N exclusively found in second wave specimens. These sequences are evidence of local diversification over the course of the pandemic and parallel evolution of escape mutations in different lineages.


Assuntos
COVID-19/patologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/virologia , Humanos , Mutação , Ligação Proteica , Domínios Proteicos/genética , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Senegal , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA