Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36081127

RESUMO

We examined the possibility of measuring dissolved oxygen by using a potentiometric solid-state semiconductor sensor. Thin films of tin (IV) oxide (SnO2) are widely used in oxygen gas sensors. However, their ability to detect dissolved oxygen (DO) in solutions is still unknown. In this paper, we present a method for investigating the dissolved oxygen-sensing properties of SnO2 thin films in solutions by fabricating a SnO2-gate field-effect transistor (FET). A similarly structured hydrogen ion-sensitive silicon nitride (Si3N4)-gate FET was fabricated using the same method. The transfer characteristics and sensitivities were experimentally obtained and compared. The transfer characteristics of the FET show a shift in threshold voltage in response to a decrease in DO concentration. The SnO2-gate FET exhibited a sensitivity of 4 mV/ppm, whereas the Si3N4-gate FET showed no response to DO. Although the SnO2-gate FET responds to pH changes in the solution, this sensitivity issue can be eliminated by using a Si3N4-gate FET, which is capable of selectively sensing hydrogen ions without DO sensitivity. The experimental results indicate the promising properties of SnO2 thin films for multimodal sensing applications.

2.
Sci Rep ; 14(1): 15601, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971913

RESUMO

The electrical potential of the mycelia of a cord-forming wood decay fungus, Pholiota brunnescens, was monitored for over 100 days on a plain agar plate during the colonization onto a wood bait. Causality analyses of the electrical potential at different locations of the mycelium revealed a clear and stable causal relationship with the directional flow of the electrical potential from the hyphae at the bait location to other parts of the mycelium. However, this causality disappeared after 60 days of incubation, coinciding with the onset of slow electrical oscillation at the bait location, which occurred over one week per oscillation cycle. We speculated that the hyphae that initially colonized the bait may act as a temporary activity center, which generates electrical signals to other parts of the mycelium, thereby facilitating the colonization of the entire mycelial body to the bait. The week-long electrical oscillation represents the longest oscillation period ever recorded in fungi and warrants further investigation to elucidate its function and stability in response to environmental stimuli.


Assuntos
Micélio , Micélio/fisiologia , Hifas/fisiologia , Ascomicetos/fisiologia , Madeira/microbiologia
3.
Biosensors (Basel) ; 12(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36421151

RESUMO

This study proposed a filter-free wavelength sensor with a double-well structure for detecting fluorescence without an optical filter. The impurity concentration was optimized and simulated to form a double-well-structured sensor, of which the result was consistent with the fabricated sensor. Furthermore, we proposed a novel wavelength detection method using the current ratio based on the silicon absorption coefficient. The results showed that the proposed method successfully detected single wavelengths in the 460-800 nm range. Additionally, we confirmed that quantification was possible using the current ratio of the sensor for a relatively wide band wavelength, such as fluorescence. Finally, the fluorescence that was emitted from the reagents ALEXA488, 594, and 680 was successfully identified and quantified. The proposed sensor can detect wavelengths without optical filters, which can be used in various applications in the biofield, such as POCT as a miniaturized wavelength detection sensor.


Assuntos
Silício , Silício/química , Fluorescência
4.
J Phys Chem A ; 113(13): 3061-7, 2009 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-19320513

RESUMO

The anomalous chemical wave propagation of an unstirred Belousov-Zhabotinsky (BZ) reaction was observed under exposure to a gradient static magnetic field (SMF). The gradient SMF effect on the BZ reaction was investigated by increasing the thickness of the BZ medium up to 0.9 mm under the conditions of the extremely reduced water evaporation and surface tension caused by air-water interfaces. The respective maximum values of magnetic flux density (B(max)), magnetic flux gradient (G(max)), and the magnetic force product of the magnetic flux density x its gradient (a magnetic force parameter) are 0.206 T, 37 T m(-1), and 4 T(2) m(-1). The experiments demonstrate that the more increased thickness of the BZ medium induces the larger anomalous wave propagation toward the peak magnetic gradient line but not toward the peak magnetic force product line. The anomalies were significantly enhanced by the increased thickness of the BZ medium at the shorter distance from the maximum magnetic gradient point. The possible mechanism of SMF-induced anomalous wave propagation related to the BZ medium thickness is that the micro-magneto-convection-induced flow of the paramagnetic iron ion complexes at the wavefronts can be accelerated by increases in both the spatial magnetic gradient and the volumetric depth of the diffusion layer.


Assuntos
Campos Eletromagnéticos , Modelos Químicos
5.
Bioelectromagnetics ; 29(8): 598-604, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18512693

RESUMO

It is believed that static magnetic fields (SMF) cannot affect the pattern formation of the Belousov-Zhabotinsky (BZ) reaction, which has been frequently studied as a simplified experimental model of a nonequilibrium open system, because SMF produces no induced current and the magnetic force of SMF far below 1 T is too low to expect the effects on electrons in the BZ reaction. In the present study, we examined whether the velocity of chemical waves in the unstirred BZ reaction can be affected by a moderate-intensity SMF exposure depending on the spatial magnetic gradient. The SMF was generated by a parallel pair of attracting rectangular NdFeB magnets positioned opposite each other. The respective maximum values of magnetic flux density (B(max)), magnetic flux gradient (G(max)), and the magnetic force product of the magnetic flux density its gradient (a magnetic force parameter) were 206 mT, 37 mT/mm, and 3,000 mT(2)/mm. The ferroin-catalyzed BZ medium was exposed to the SMF for up to 16 min at 25 degrees C. The experiments demonstrated that the wave velocity was significantly accelerated primarily by the magnetic gradient. The propagation of the fastest wave front indicated a sigmoid increase along the peak magnetic gradient line, but not along the peak magnetic force product line. The underlying mechanisms of the SMF effects on the anomalous wave propagation could be attributed primarily to the increased concentration gradient of the paramagnetic iron ion complexes at the chemical wave fronts induced by the magnetic gradient.


Assuntos
Brometos/química , Compostos Inorgânicos/química , Malonatos/química , Modelos Químicos , Brometos/efeitos da radiação , Catálise , Simulação por Computador , Relação Dose-Resposta à Radiação , Campos Eletromagnéticos , Compostos Inorgânicos/efeitos da radiação , Malonatos/efeitos da radiação , Oxirredução/efeitos da radiação , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA