Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 44(4): 1587-1596, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35723366

RESUMO

Epithelial ovarian cancer is classified into four major histological subtypes: serous, clear cell, endometrioid and mucinous. Ovarian clear cell carcinoma (OCCC) responds poorly to conventional chemotherapies and shows poor prognosis. Thus, there is a need to develop new drugs for the treatment of OCCC. In this study, we performed CRISPR/Cas9 screens against OCCC cell lines and identified candidate genes important for their proliferation. We found that quite different genes are required for the growth of ARID1A and PIK3CA mutant and wild-type OCCC cell lines, respectively. Furthermore, we found that the epigenetic regulator KDM2A and the translation regulator PAIP1 may play important roles in the growth of ARID1A and PIK3CA mutant, but not wild-type, OCCC cells. The results of our CRISPR/Cas9 screening may be useful in elucidating the molecular mechanism of OCCC tumorigenesis and in developing OCCC-targeted drugs.

2.
Cancer Sci ; 113(6): 2034-2043, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35377528

RESUMO

Ovarian cancer is the fifth most common cause of cancer-related death in women. Ovarian clear cell carcinoma (OCCC) is a chemotherapy-resistant epithelial ovarian cancer with poor prognosis. As a basis for the development of therapeutic agents that could improve the prognosis of OCCC, we performed a screen for proteins critical for the tumorigenicity of OCCC using the CRISPR/Cas9 system. Here we show that knockdown of the phosphate exporter XPR1/SLC53A1 induces the growth arrest and apoptosis of OCCC cells in vitro. Moreover, we show that knockdown of XPR1/SLC53A1 inhibits the proliferation of OCCC cells xenografted into immunocompromised mice. These results suggest that XPR1/SLC53A1 plays a critical role in the tumorigenesis of OCCC cells. We speculate that XPR1/SLC53A1 might be a promising molecular target for the therapeutic treatment of OCCC.


Assuntos
Adenocarcinoma de Células Claras , Neoplasias Ovarianas , Adenocarcinoma de Células Claras/patologia , Animais , Carcinoma Epitelial do Ovário/genética , Feminino , Humanos , Camundongos , Neoplasias Ovarianas/patologia , Fosfatos/uso terapêutico , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA