Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(3): e1012079, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466743

RESUMO

Macrophages can undergo M1-like proinflammatory polarization with low oxidative phosphorylation (OXPHOS) and high glycolytic activities or M2-like anti-inflammatory polarization with the opposite metabolic activities. Here we show that M1-like macrophages induced by hepatitis B virus (HBV) display high OXPHOS and low glycolytic activities. This atypical metabolism induced by HBV attenuates the antiviral response of M1-like macrophages and is mediated by HBV e antigen (HBeAg), which induces death receptor 5 (DR5) via toll-like receptor 4 (TLR4) to induce death-associated protein 3 (DAP3). DAP3 then induces the expression of mitochondrial genes to promote OXPHOS. HBeAg also enhances the expression of glutaminases and increases the level of glutamate, which is converted to α-ketoglutarate, an important metabolic intermediate of the tricarboxylic acid cycle, to promote OXPHOS. The induction of DR5 by HBeAg leads to apoptosis of M1-like and M2-like macrophages, although HBeAg also induces pyroptosis of the former. These findings reveal novel activities of HBeAg, which can reprogram mitochondrial metabolism and trigger different programmed cell death responses of macrophages depending on their phenotypes to promote HBV persistence.


Assuntos
Vírus da Hepatite B , Hepatite B , Humanos , Vírus da Hepatite B/genética , Antígenos E da Hepatite B/metabolismo , Macrófagos/metabolismo , Apoptose
2.
Immunity ; 44(5): 1204-14, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27156385

RESUMO

In contrast to horizontal transmission of hepatitis B virus (HBV) between adults, which often leads to self-limited acute infection, vertical transmission of HBV from mother to child often leads to chronic infection. However, the mechanisms linking vertical transmission with chronic infection are not known. We developed a mouse model to study the effect of maternal HBV infection on HBV persistence in offspring and found that HBV carried by the mother impaired CD8(+) T cell responses to HBV in her offspring, resulting in HBV persistence. This impairment of CD8(+) T cell responses was mediated by hepatic macrophages, which were predisposed by maternal HBV e antigen (HBeAg) to support HBV persistence by upregulation of inhibitory ligand PD-L1 and altered polarization upon restimulation with HBeAg. Depletion of hepatic macrophages led to CD8(+) T cell activation and HBV clearance in the offspring, raising the possibility of targeting macrophages to treat chronic HBV patients.


Assuntos
Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Vírus da Hepatite B/fisiologia , Hepatite B/imunologia , Transmissão Vertical de Doenças Infecciosas , Macrófagos/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Animais , Animais Geneticamente Modificados , Antígeno B7-H1/genética , Linfócitos T CD8-Positivos/virologia , Feminino , Regulação da Expressão Gênica , Hepatite B/transmissão , Antígenos E da Hepatite B/imunologia , Humanos , Ativação Linfocitária , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Carga Viral
3.
J Allergy Clin Immunol ; 153(5): 1406-1422.e6, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38244725

RESUMO

BACKGROUND: Type 2 innate lymphoid cells (ILC2s) play a pivotal role in type 2 asthma. CD226 is a costimulatory molecule involved in various inflammatory diseases. OBJECTIVE: We aimed to investigate CD226 expression and function within human and mouse ILC2s, and to assess the impact of targeting CD226 on ILC2-mediated airway hyperreactivity (AHR). METHODS: We administered IL-33 intranasally to wild-type mice, followed by treatment with anti-CD226 antibody or isotype control. Pulmonary ILC2s were sorted for ex vivo analyses through RNA sequencing and flow cytometry. Next, we evaluated the effects of CD226 on AHR and lung inflammation in wild-type and Rag2-/- mice. Additionally, we compared peripheral ILC2s from healthy donors and asthmatic patients to ascertain the role of CD226 in human ILC2s. RESULTS: Our findings demonstrated an inducible expression of CD226 in activated ILC2s, enhancing their cytokine secretion and effector functions. Mechanistically, CD226 alters intracellular metabolism and enhances PI3K/AKT and MAPK signal pathways. Blocking CD226 ameliorates ILC2-dependent AHR in IL-33 and Alternaria alternata-induced models. Interestingly, CD226 is expressed and inducible in human ILC2s, and its blocking reduces cytokine production. Finally, we showed that peripheral ILC2s in asthmatic patients exhibited elevated CD226 expression compared to healthy controls. CONCLUSION: Our findings underscore the potential of CD226 as a novel therapeutic target in ILC2s, presenting a promising avenue for ameliorating AHR and allergic asthma.


Assuntos
Antígenos de Diferenciação de Linfócitos T , Asma , Imunidade Inata , Linfócitos , Animais , Feminino , Humanos , Masculino , Camundongos , Antígenos de Diferenciação de Linfócitos T/imunologia , Antígenos de Diferenciação de Linfócitos T/genética , Asma/imunologia , Interleucina-33/imunologia , Linfócitos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Immunity ; 42(3): 538-51, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25769613

RESUMO

Allergic asthma is caused by Th2-cell-type cytokines in response to allergen exposure. Type 2 innate lymphoid cells (ILC2s) are a newly identified subset of immune cells that, along with Th2 cells, contribute to the pathogenesis of asthma by producing copious amounts of IL-5 and IL-13, which cause eosinophilia and airway hyperreactivity (AHR), a cardinal feature of asthma. ILC2s express ICOS, a T cell costimulatory molecule with a currently unknown function. Here we showed that a lack of ICOS on murine ILC2s and blocking the ICOS:ICOS-ligand interaction in human ILC2s reduced AHR and lung inflammation. ILC2s expressed both ICOS and ICOS-ligand, and the ICOS:ICOS-ligand interaction promoted cytokine production and survival in ILC2s through STAT5 signaling. Thus, ICOS:ICOS-ligand signaling pathway is critically involved in ILC2 function and homeostasis.


Assuntos
Asma/imunologia , Ligante Coestimulador de Linfócitos T Induzíveis/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/imunologia , Linfócitos/imunologia , Animais , Asma/genética , Asma/patologia , Feminino , Regulação da Expressão Gênica , Homeostase , Humanos , Imunidade Inata , Ligante Coestimulador de Linfócitos T Induzíveis/genética , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Interleucina-13/genética , Interleucina-13/imunologia , Interleucina-2/genética , Interleucina-2/imunologia , Interleucina-33 , Interleucina-5/genética , Interleucina-5/imunologia , Interleucinas/genética , Interleucinas/imunologia , Linfócitos/patologia , Camundongos Transgênicos , Sistema Respiratório/imunologia , Sistema Respiratório/patologia , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/imunologia , Transdução de Sinais
5.
J Allergy Clin Immunol ; 151(2): 526-538.e8, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35963455

RESUMO

BACKGROUND: Neutrophilic asthma is associated with disease severity and corticosteroid insensitivity. Novel therapies are required to manage this life-threatening asthma phenotype. Programmed cell death protein-1 (PD-1) is a key homeostatic modulator of the immune response for T-cell effector functions. OBJECTIVE: We sought to investigate the role of PD-1 in the regulation of acute neutrophilic inflammation in a murine model of airway hyperreactivity (AHR). METHODS: House dust mite was used to induce and compare neutrophilic AHR in wild-type and PD-1 knockout mice. Then, the therapeutic potential of a human PD-1 agonist was tested in a humanized mouse model in which the PD-1 extracellular domain is entirely humanized. Single-cell RNA sequencing and flow cytometry were mainly used to investigate molecular and cellular mechanisms. RESULTS: PD-1 was highly induced on pulmonary T cells in our inflammatory model. PD-1 deficiency was associated with an increased neutrophilic AHR and high recruitment of inflammatory cells to the lungs. Consistently, PD-1 agonist treatment dampened AHR, decreased neutrophil recruitment, and modulated cytokine production in a humanized PD-1 mouse model. Mechanistically, we demonstrated at the transcriptional and protein levels that the inhibitory effect of PD-1 agonist is associated with the reprogramming of pulmonary effector T cells that showed decreased number and activation. CONCLUSIONS: PD-1 agonist treatment is efficient in dampening neutrophilic AHR and lung inflammation in a preclinical humanized mouse model.


Assuntos
Asma , Receptor de Morte Celular Programada 1 , Humanos , Animais , Camundongos , Receptor de Morte Celular Programada 1/metabolismo , Pulmão , Células Th2 , Modelos Animais de Doenças
6.
J Allergy Clin Immunol ; 149(5): 1628-1642.e10, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34673048

RESUMO

BACKGROUND: Cannabinoids modulate the activation of immune cells and physiologic processes in the lungs. Group 2 innate lymphoid cells (ILC2s) are central players in type 2 asthma, but how cannabinoids modulate ILC2 activation remains to be elucidated. OBJECTIVE: Our goal was to investigate the effects of cannabinoids on ILC2s and their role in asthma. METHODS: A combination of cannabinoid receptor (CB)2 knockout (KO) mice, CB2 antagonist and agonist were used in the mouse models of IL-33, IL-25, and Alternaria alternata ILC2-dependent airway inflammation. RNA sequencing was performed to assess transcriptomic changes in ILC2s, and humanized mice were used to assess the role of CB2 signaling in human ILC2s. RESULTS: We provide evidence that CB2 signaling in ILC2s is important for the development of ILC2-driven airway inflammation in both mice and human. We showed that both naive and activated murine pulmonary ILC2s express CB2. CB2 signaling did not affect ILC2 homeostasis at steady state, but strikingly it stimulated ILC2 proliferation and function upon activation. As a result, ILC2s lacking CB2 induced lower lung inflammation, as we made similar observations using a CB2 antagonist. Conversely, CB2 agonism remarkably exacerbated ILC2-driven airway hyperreactivity and lung inflammation. Mechanistically, transcriptomic and protein analysis revealed that CB2 signaling induced cyclic adenosine monophosphate-response element binding protein (CREB) phosphorylation in ILC2s. Human ILC2s expressed CB2, as CB2 antagonism and agonism showed opposing effects on ILC2 effector function and development of airway hyperreactivity in humanized mice. CONCLUSION: Collectively, our results define CB2 signaling in ILC2s as an important modulator of airway inflammation.


Assuntos
Asma , Canabinoides , Pneumonia , Animais , Proliferação de Células , Citocinas , Humanos , Imunidade Inata , Inflamação , Interleucina-33 , Pulmão , Linfócitos , Camundongos , Camundongos Knockout , Receptor CB2 de Canabinoide , Receptores de Canabinoides
7.
J Allergy Clin Immunol ; 149(1): 223-236.e6, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34144112

RESUMO

BACKGROUND: Type 2 innate lymphoid cells (ILC2s) are relevant players in type 2 asthma. They initiate eosinophil infiltration and airway hyperreactivity (AHR) through cytokine secretion. Leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1) is an inhibitory receptor considered to be an immune checkpoint in different inflammatory diseases. OBJECTIVE: Our aim here was to investigate the expression of LAIR-1 and assess its role in human and murine ILC2s. METHODS: Wild-type and LAIR-1 knockout mice were intranasally challenged with IL-33, and pulmonary ILC2s were sorted to perform an ex vivo comparative study based on RNA sequencing and flow cytometry. We next studied the impact of LAIR-1 deficiency on AHR and lung inflammation by using knockout mice and adoptive transfer experiments in Rag2-/-Il2rg-/- mice. Knockdown antisense strategies and humanized mice were used to assess the role of LAIR-1 in human ILC2s. RESULTS: We have demonstrated that LAIR-1 is inducible on activated ILC2s and downregulates cytokine secretion and effector function. LAIR-1 signaling in ILC2s was mediated via inhibitory pathways, including SHP1/PI3K/AKT, and LAIR-1 deficiency led to exacerbated ILC2-dependent AHR in IL-33 and Alternaria alternata models. In adoptive transfer experiments, we confirmed the LAIR-1-mediated regulation of ILC2s in vivo. Interestingly, LAIR-1 was expressed and inducible in human ILC2s, and knockdown approaches of Lair1 resulted in higher cytokine production. Finally, engagement of LAIR-1 by physiologic ligand C1q significantly reduced ILC2-dependent AHR in a humanized ILC2 murine model. CONCLUSION: Our results unravel a novel regulatory axis in ILC2s with the capacity to reduce allergic AHR and lung inflammation.


Assuntos
Alternariose/imunologia , Linfócitos/imunologia , Pneumonia/imunologia , Receptores Imunológicos/imunologia , Hipersensibilidade Respiratória/imunologia , Transferência Adotiva , Alternaria , Alternariose/fisiopatologia , Animais , Citocinas/imunologia , Feminino , Humanos , Imunidade Inata , Interleucina-33/farmacologia , Pulmão/imunologia , Pulmão/fisiopatologia , Transfusão de Linfócitos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumonia/fisiopatologia , Receptores Imunológicos/genética , Hipersensibilidade Respiratória/fisiopatologia
8.
Entropy (Basel) ; 25(11)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37998232

RESUMO

Thomson heat absorption corresponding to changes in the Seebeck coefficient with respect to temperature enables the design of thermoelectric coolers wherein Thomson cooling is the dominant term, i.e., the Thomson coolers. Thomson coolers extend the working range of Peltier coolers to larger temperature differences and higher electrical currents. The Thomson coefficient is small in most materials. Recently, large Thomson coefficient values have been measured attributed to thermally induced phase change during magnetic and structural phase transitions. The large Thomson coefficient observed can result in the design of highly efficient Thomson coolers. This work analyzes the performance of Thomson coolers analytically and sets the metrics for evaluating the performance of materials as their constituent components. The maximum heat flux when the Thomson coefficient is constant is obtained and the performance is compared to Peltier coolers. Three dimensionless parameters are introduced which determine the performance of the Thomson coolers and can be used to analyze the coefficient of performance, the maximum heat flux, and the maximum temperature difference of a Thomson cooler.

9.
J Virol ; 95(4)2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33208451

RESUMO

We recently reported the role of type 2 innate lymphoid cells (ILC2s) in central nervous system (CNS) demyelination using a model of CNS demyelination involving recombinant herpes simplex virus 1 (HSV-1) that constitutively expresses mouse interleukin 2 (HSV-IL-2). In this investigation, we studied how ILC2s respond to HSV-IL-2 at the cellular level using cytokine and gene expression profiling. ILC2s infected with HSV-IL-2 expressed higher levels of granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-5, IL-6, IL-13, IP-10, MIP-2, and RANTES, which include proinflammatory cytokines, than did those infected with parental control virus. In contrast, TH2 cytokines IL-4 and IL-9, which are typically expressed by ILC2s, were not induced upon HSV-IL-2 infection. Transcriptome sequencing (RNA-seq) analysis of HSV-IL-2 infected ILC2s showed significant upregulation of over 350 genes and downregulation of 157 genes compared with parental virus-infected ILC2s. Gene Ontology (GO) term analysis indicated that genes related to "mitosis" and "inflammatory response" were among the upregulated genes, suggesting that HSV-IL-2 infection drives the excessive proliferation and atypical inflammatory response of ILC2s. This change in ILC2 activation state could underlie the pathology of demyelinating diseases.IMPORTANCE Innate lymphocytes have plasticity and can change functionality; type 2 innate lymphoid cells (ILC2s) can convert to ILC1 or ILC3 cells or change their activation state to produce IL-17 or IL-10 depending on environmental cues. In this study, we investigated the gene and cytokine profiles of ILC2s, which play a major role in HSV-IL-2-induced CNS demyelination. ILC2s infected with HSV-IL-2 displayed a massive remodeling of cellular state. Additionally, ILC2s infected with HSV-IL-2 differed from those infected with parental HSV in cellular and viral gene expression profiles and in cytokine/chemokine induction, and they displayed enhanced activation and proinflammatory responses. These changes in ILC2 activation state could underlie the pathology of demyelinating diseases. These results also highlight the possible importance of pathogens as environmental cues to modify innate lymphocyte functionalities.


Assuntos
Doenças Desmielinizantes , Herpesvirus Humano 1/fisiologia , Interleucina-2/metabolismo , Linfócitos , Transcriptoma/imunologia , Animais , Células Cultivadas , Citocinas/metabolismo , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/virologia , Expressão Gênica , Linfócitos/metabolismo , Linfócitos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Coelhos
10.
Environ Health ; 21(1): 36, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-35305663

RESUMO

BACKGROUND: Air pollution has been associated with metabolic disease and obesity. Adipokines are potential mediators of these effects, but studies of air pollution-adipokine relationships are inconclusive. Macrophage and T cells in adipose tissue (AT) and blood modulate inflammation; however, the role of immune cells in air pollution-induced dysregulation of adipokines has not been studied. We examined the association between air pollution exposure and circulating and AT adipokine concentrations, and whether these relationships were modified by macrophage and T cell numbers in the blood and AT. METHODS: Fasting blood and abdominal subcutaneous AT biopsies were collected from 30 overweight/obese 18-26 year-old volunteers. Flow cytometry was used to quantify T effector (Teff, inflammatory) and regulatory (Treg, anti-inflammatory) lymphocytes and M1 [inflammatory] and M2 [anti-inflammatory]) macrophage cell number. Serum and AT leptin and adiponectin were measured using enzyme-linked immunosorbent assay (ELISA). Exposure to near-roadway air pollution (NRAP) from freeway and non-freeway vehicular sources and to regional particulate matter, nitrogen dioxide and ozone were estimated for the year prior to biopsy, based on participants' residential addresses. Linear regression models were used to examine the association between air pollution exposures and adipokines and to evaluate effect modification by immune cell counts. RESULTS: An interquartile increase in non-freeway NRAP exposure during 1 year prior to biopsy was associated with higher leptin levels in both serum [31.7% (95% CI: 10.4, 52.9%)] and AT [19.4% (2.2, 36.6%)]. Non-freeway NRAP exposure effect estimates were greater among participants with greater than median Teff/Treg ratio and M1/M2 ratio in blood, and with greater M1 counts in AT. No adipokine associations with regional air pollutants were found. DISCUSSION: Our results suggest that NRAP may increase serum leptin levels in obese young adults, and this association may be promoted in a pro-inflammatory immune cell environment in blood and AT.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Adipocinas/análise , Adolescente , Adulto , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , Humanos , Leptina/análise , Obesidade/epidemiologia , Material Particulado/análise , Material Particulado/toxicidade , Adulto Jovem
11.
PLoS Genet ; 15(12): e1008528, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31869344

RESUMO

Asthma is a chronic inflammatory disease of the airways with contributions from genes, environmental exposures, and their interactions. While genome-wide association studies (GWAS) in humans have identified ~200 susceptibility loci, the genetic factors that modulate risk of asthma through gene-environment (GxE) interactions remain poorly understood. Using the Hybrid Mouse Diversity Panel (HMDP), we sought to identify the genetic determinants of airway hyperreactivity (AHR) in response to diesel exhaust particles (DEP), a model traffic-related air pollutant. As measured by invasive plethysmography, AHR under control and DEP-exposed conditions varied 3-4-fold in over 100 inbred strains from the HMDP. A GWAS with linear mixed models mapped two loci significantly associated with lung resistance under control exposure to chromosomes 2 (p = 3.0x10-6) and 19 (p = 5.6x10-7). The chromosome 19 locus harbors Il33 and is syntenic to asthma association signals observed at the IL33 locus in humans. A GxE GWAS for post-DEP exposure lung resistance identified a significantly associated locus on chromosome 3 (p = 2.5x10-6). Among the genes at this locus is Dapp1, an adaptor molecule expressed in immune-related and mucosal tissues, including the lung. Dapp1-deficient mice exhibited significantly lower AHR than control mice but only after DEP exposure, thus functionally validating Dapp1 as one of the genes underlying the GxE association at this locus. In summary, our results indicate that some of the genetic determinants for asthma-related phenotypes may be shared between mice and humans, as well as the existence of GxE interactions in mice that modulate lung function in response to air pollution exposures relevant to humans.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Poluentes Atmosféricos/toxicidade , Asma/genética , Hiper-Reatividade Brônquica/induzido quimicamente , Lipoproteínas/genética , Emissões de Veículos/toxicidade , Animais , Asma/induzido quimicamente , Hiper-Reatividade Brônquica/genética , Mapeamento Cromossômico , Modelos Animais de Doenças , Feminino , Interação Gene-Ambiente , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Pletismografia
12.
J Allergy Clin Immunol ; 147(4): 1281-1295.e5, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32905799

RESUMO

BACKGROUND: Group 2 innate lymphoid cells (ILC2s) are the dominant innate lymphoid cell population in the lungs at steady state, and their release of type 2 cytokines is a central driver in responding eosinophil infiltration and increased airway hyperreactivity. Our laboratory has identified a unique subset of ILC2s in the lungs that actively produce IL-10 (ILC210s). OBJECTIVE: Our aim was to characterize the effector functions of ILC210s in the development and pathology of allergic asthma. METHODS: IL-4-stimulated ILC210s were isolated to evaluate cytokine secretion, transcription factor signaling, metabolic dependence, and effector functions in vitro. ILC210s were also adoptively transferred into Rag2-/-γc-/- mice, which were then challenged with IL-33 and assessed for airway hyperreactivity and lung inflammation. RESULTS: We have determined that the transcription factors cMaf and Blimp-1 regulate IL-10 expression in ILC210s. Strikingly, our results demonstrate that ILC210s can utilize both autocrine and paracrine signaling to suppress proinflammatory ILC2 effector functions in vitro. Further, this subset dampens airway hyperreactivity and significantly reduces lung inflammation in vivo. Interestingly, ILC210s demonstrated a metabolic dependency on the glycolytic pathway for IL-10 production, shifting from the fatty acid oxidation pathway conventionally utilized for proinflammatory effector functions. CONCLUSION: These findings provide an important and previously unrecognized role of ILC210s in diseases associated with ILC2s such as allergic lung inflammation and asthma. They also provide new insights into the metabolism dependency of proinflammatory and anti-inflammatory ILC2 phenotypes.


Assuntos
Asma/imunologia , Hiper-Reatividade Brônquica/imunologia , Interleucina-10/imunologia , Linfócitos/imunologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/imunologia , Proteínas Proto-Oncogênicas c-maf/imunologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Feminino , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
13.
FASEB J ; 34(9): 11444-11459, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32654256

RESUMO

In a rat model, perinatal nicotine exposure results in an epigenetically driven multi- and trans-generationally transmitted asthmatic phenotype that tends to wane over successive generations. However, the effect of repeat nicotine exposure during the F1 (Filial 1) gestational period on the transmitted phenotype is unknown. Using a well-established rat model, we compared lung function, mesenchymal markers of airway reactivity, and global gonadal DNA methylation changes in F2 offspring in a sex-specific manner following perinatal exposure to nicotine in only the F0 gestation, in both F0 and F1 (F0/F1) gestations, and in neither (control group). Both F0 only and F0/F1 exposure groups showed an asthmatic phenotype, an effect that was more pronounced in the F0/F1 exposure group, especially in males. Testicular global DNA methylation increased, while ovarian global DNA methylation decreased in the F0/F1 exposed group. Since the offspring of smokers are more likely to smoke than the offspring of nonsmokers, this sets the stage for more severe asthma if both mother and grandmother had smoked during their pregnancies. Increased gonadal DNA methylation changes following nicotine reexposure in the F1 generation suggests that epigenetic mechanisms might well underlie the transgenerational inheritance of acquired phenotypic traits in general and nicotine-induced asthma in particular.


Assuntos
Asma/diagnóstico , Pulmão/efeitos dos fármacos , Nicotina/toxicidade , Efeitos Tardios da Exposição Pré-Natal/diagnóstico , Animais , Asma/induzido quimicamente , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Feminino , Pulmão/fisiopatologia , Masculino , Exposição Materna/efeitos adversos , Agonistas Nicotínicos/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos Sprague-Dawley , Testes de Função Respiratória , Fatores Sexuais , Testículo/efeitos dos fármacos , Testículo/metabolismo
14.
J Allergy Clin Immunol ; 145(2): 502-517.e5, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31738991

RESUMO

BACKGROUND: Allergic asthma is a chronic inflammatory disorder characterized by airway hyperreactivity (AHR) and driven by TH2 cytokine production. Group 2 innate lymphoid cells (ILC2s) secrete high amounts of TH2 cytokines and contribute to the development of AHR. Autophagy is a cellular degradation pathway that recycles cytoplasmic content. However, the role of autophagy in ILC2s remains to be fully elucidated. OBJECTIVE: We characterized the effects of autophagy deficiency on ILC2 effector functions and metabolic balance. METHODS: ILC2s from autophagy-deficient mice were isolated to evaluate proliferation, apoptosis, cytokine secretion, gene expression and cell metabolism. Also, autophagy-deficient ILC2s were adoptively transferred into Rag-/-GC-/- mice, which were then challenged with IL-33 and assessed for AHR and lung inflammation. RESULTS: We demonstrate that autophagy is extensively used by activated ILC2s to maintain their homeostasis and effector functions. Deletion of the critical autophagy gene autophagy-related 5 (Atg5) resulted in decreased cytokine secretion and increased apoptosis. Moreover, lack of autophagy among ILC2s impaired their ability to use fatty acid oxidation and strikingly promoted glycolysis, as evidenced by our transcriptomic and metabolite analyses. This shift of fuel dependency led to impaired homeostasis and TH2 cytokine production, thus inhibiting the development of ILC2-mediated AHR. Notably, this metabolic reprogramming was also associated with an accumulation of dysfunctional mitochondria, producing excessive reactive oxygen species. CONCLUSION: These findings provide new insights into the metabolic profile of ILC2s and suggest that modulation of fuel dependency by autophagy is a potentially new therapeutic approach to target ILC2-dependent inflammation.


Assuntos
Autofagia/imunologia , Homeostase/imunologia , Imunidade Inata/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Animais , Camundongos , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/metabolismo
15.
Immunol Rev ; 278(1): 192-206, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28658553

RESUMO

Innate lymphoid cells are functionally diverse subsets of immune cells including the conventional natural killer cells, lymphoid tissue inducers, type 1, 2, and 3 with significant roles in immunity and pathogenesis of inflammatory diseases. Type 2 innate lymphoid cells (ILC2s) resemble type 2 helper (Th2) cells in cytokine production and contribute to anti-helminth immunity, maintaining mucosal tissue integrity, and adipose tissue browning. ILC2s play important roles in the pathogenesis of allergic diseases and asthma. Studying the pathways of activation and regulation of ILC2s are currently a priority for giving a better understanding of pathogenesis of diseases with immunological roots. Recently, our laboratory and others have shown several pathways of regulation of ILC2s by co-stimulatory molecules such as ICOS, regulatory T cells and by compounds such as nicotine. In this review, we summarize the current understanding of the mechanisms of activation and regulation of ILC2s and the role of these cells in health and disease.


Assuntos
Imunidade Inata , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Animais , Biomarcadores , Plasticidade Celular/genética , Plasticidade Celular/imunologia , Citocinas/metabolismo , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Humanos , Imunidade , Memória Imunológica , Imunomodulação , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Fenótipo
16.
J Neuroinflammation ; 17(1): 189, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32539719

RESUMO

OBJECTIVE: To characterize long-term repopulation of peripheral immune cells following alemtuzumab-induced lymphopenia in relapsing-remitting MS (RRMS), with a focus on regulatory cell types, and to explore associations with clinical outcome measures. METHODS: The project was designed as a multicenter add-on longitudinal mechanistic study for RRMS patients enrolled in CARE-MS II, CARE-MS II extension at the University of Southern California and Stanford University, and an investigator-initiated study conducted at the Universities of British Columbia and Chicago. Methods involved collection of blood at baseline, prior to alemtuzumab administration, and at months 5, 11, 17, 23, 36, and 48 post-treatment. T cell, B cell, and natural killer (NK) cell subsets, chemokine receptor expression in T cells, in vitro cytokine secretion patterns, and regulatory T cell (Treg) function were assessed. Clinical outcomes, including expanded disability status score (EDSS), relapses, conventional magnetic resonance imaging (MRI) measures, and incidents of secondary autoimmunity were tracked. RESULTS: Variable shifts in lymphocyte populations occurred over time in favor of CD4+ T cells, B cells, and NK cells with surface phenotypes characteristic of regulatory subsets, accompanied by reduced ratios of effector to regulatory cell types. Evidence of increased Treg competence was observed after each treatment course. CD4+ and CD8+ T cells that express CXCR3 and CCR5 and CD8+ T cells that express CDR3 and CCR4 were also enriched after treatment, indicating heightened trafficking potential in activated T cells. Patterns of repopulation were not associated with measures of clinical efficacy or secondary autoimmunity, but exploratory analyses using a random generalized estimating equation (GEE) Poisson model provide preliminary evidence of associations between pro-inflammatory cell types and increased risk for gadolinium (Gd+) enhancing lesions, while regulatory subsets were associated with reduced risk. In addition, the risk for T2 lesions correlated with increases in CD3+CD8+CXCR3+ cells. CONCLUSIONS: Lymphocyte repopulation after alemtuzumab treatment favors regulatory subsets in the T cell, B cell, and NK cell compartments. Clinical efficacy may reflect the sum of interactions among them, leading to control of potentially pathogenic effector cell types. Several immune measures were identified as possible biomarkers of lesion activity. Future studies are necessary to more precisely define regulatory and effector subsets and their contributions to clinical efficacy and risk for secondary autoimmunity in alemtuzumab-treated patients, and to reveal new insights into mechanisms of immunopathogenesis in MS. TRIAL REGISTRATION: Parent trials for this study are registered with ClinicalTrials.gov: CARE-MS II: NCT00548405, CARE-MS II extension: NCT00930553 and ISS: NCT01307332.


Assuntos
Alemtuzumab/uso terapêutico , Fatores Imunológicos/uso terapêutico , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Esclerose Múltipla Recidivante-Remitente/imunologia , Adulto , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Feminino , Humanos , Imunofenotipagem , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Masculino , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
17.
J Virol ; 93(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31019056

RESUMO

Innate lymphoid cells (ILCs) play important roles in host defense and inflammation. They are classified into three distinct groups based on their cytokine and chemokine secretion patterns and transcriptome profiles. Here, we show that ILCs isolated from mice can be infected with herpes simplex virus 1 (HSV-1) but that subsequent replication of the virus is compromised. After infection, type 2 ILCs expressed significantly higher levels of granulocyte colony-stimulating factor (G-CSF), interleukin 1α (IL-1α), IL-6, IL-9, RANTES, tumor necrosis factor alpha (TNF-α), CXCL1, CXCL2, CXCL10, CCL3, and CCL4 than infected type 1 or type 3 ILCs. Transcriptome-sequencing (RNA-seq) analysis of the ILCs 24 h after HSV-1 infection revealed that 77 herpesvirus genes were detected in the infected type 3 ILCs, whereas only 11 herpesvirus genes were detected in infected type 1 ILCs and 27 in infected type 2 ILCs. Compared with uninfected cells, significant upregulation of over 4,000 genes was seen in the HSV-1-infected type 3 ILCs, whereas 414 were upregulated in the infected type 1 ILCs and 128 in the infected type 2 ILCs. In contrast, in all three cell types, only a limited number of genes were significantly downregulated. Type 1, type 2, and type 3 ILC-deficient mice were used to gain insights into the effects of the ILCs on the outcome of ocular HSV-1 infection. No significant differences were found on comparison with similarly infected wild-type mice or on comparison of the three strains of deficient mice in terms of virus replication in the eyes, levels of corneal scarring, latency-reactivation in the trigeminal ganglia, or T-cell exhaustion. Although there were no significant differences in the survival rates of infected ILC-deficient mice and wild-type mice, there was significantly reduced survival of the infected type 1 or type 3 ILC-deficient mice compared with type 2 ILC-deficient mice. Adoptive transfer of wild-type T cells did not alter survival or any other parameters tested in the infected mice. Our results indicate that type 1, 2, and 3 ILCs respond differently to HSV-1 infection in vitro and that the absence of type 1 or type 3, but not type 2, ILCs affects the survival of ocularly infected mice.IMPORTANCE In this study, we investigated for the first time what roles, if any, innate lymphoid cells (ILCs) play in HSV-1 infection. Analysis of isolated ILCs in vitro revealed that all three subtypes could be infected with HSV-1 but that they were resistant to replication. The expression profiles of HSV-1-induced cytokines/chemokines and cellular and viral genes differed among the infected type 1, 2, and 3 ILCs in vitro While ILCs play no role or a redundant role in the outcomes of latency-reactivation in infected mice, absence of type 1 and type 3, but not type 2, ILCs affects the survival of infected mice.


Assuntos
Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Imunidade Inata , Linfócitos/imunologia , Linfócitos/metabolismo , Animais , Quimiocinas/metabolismo , Córnea/virologia , Lesões da Córnea , Citocinas/genética , Citocinas/metabolismo , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Regulação Viral da Expressão Gênica , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/patogenicidade , Imunidade Inata/genética , Linfócitos/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T , Transcriptoma , Gânglio Trigeminal/virologia , Latência Viral , Replicação Viral
18.
J Virol ; 92(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30185591

RESUMO

Herpes simplex virus 1 (HSV-1) is one of the most prevalent herpesviruses in humans and represents a constant health threat to aged and immunocompromised populations. How HSV-1 interacts with the host immune system to efficiently establish infection and latency is only partially known. CD1d-restricted NKT cells are a critical arm of the host innate immune system and play potent roles in anti-infection and antitumor immune responses. We discovered previously that upon infection, HSV-1 rapidly and efficiently downregulates CD1d expression on the cell surface and suppresses the function of NKT cells. Furthermore, we identified the viral serine/threonine protein kinase US3 as a major viral factor downregulating CD1d during infection. Interestingly, neither HSV-1 nor its US3 protein efficiently inhibits mouse CD1d expression, suggesting that HSV-1 has coevolved with the human immune system to specifically suppress human CD1d (hCD1d) and NKT cell function for its pathogenesis. This is consistent with the fact that wild-type mice are mostly resistant to HSV-1 infection. On the other hand, in vivo infection of CD1d-humanized mice (hCD1d knock-in mice) showed that HSV-1 can indeed evade hCD1d function and establish infection in these mice. We also report here that US3-deficient viruses cannot efficiently infect hCD1d knock-in mice but infect mice lacking all NKT cells at a higher efficiency. Together, these studies supported HSV-1 evasion of human CD1d and NKT cell function as an important pathogenic factor for the virus. Our results also validated the potent roles of NKT cells in antiherpesvirus immune responses and pointed to the potential of NKT cell ligands as adjuvants for future vaccine development.IMPORTANCE Herpes simplex virus 1 (HSV-1) is among the most common human pathogens. Little is known regarding the exact mechanism by which this virus evades the human immune system, particularly the innate immune system. We reported previously that HSV-1 employs its protein kinase US3 to modulate the expression of the key antigen-presenting molecule, CD1d, so as to evade the antiviral function of NKT cells. Here we demonstrated that the virus has coevolved with the human CD1d and NKT cell system and that NKT cells indeed play potent roles in anti-HSV immune responses. These studies point to the great potential of exploring NKT cell ligands as adjuvants for HSV vaccines.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos CD1d/fisiologia , Células Dendríticas/imunologia , Herpes Simples/virologia , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/patogenicidade , Células T Matadoras Naturais/imunologia , Animais , Regulação para Baixo , Feminino , Herpes Simples/imunologia , Herpes Simples/patologia , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Virulência
19.
Pediatr Transplant ; 23(7): e13560, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31402535

RESUMO

PURPOSE OF REVIEW: Long-term follow-up has suggested that pediatric LDLT may have superior outcomes compared to deceased donor recipients. In this review, we describe the subset of LDLT recipients with maternal donors that have lower reported rates of rejection and improved allograft survival. RECENT FINDINGS: Pediatric LDLT recipients, particularly those with a primary diagnosis of biliary atresia who receive grafts from their mothers, have been reported to have lower rates of acute cellular rejection post-transplant and graft failure. Maternal-fetal microchimerism and the persistence of regulatory T cells may be related to improved outcomes observed in recipients with maternal donors. Further, recent studies have shown that up to 60% of pediatric LDLT recipients can undergo intentional withdrawal of immunosuppression and achieve long-term operational tolerance. The impact of graft type on operational tolerance has not been thoroughly investigated; however, investigation of tolerant pediatric LDLT patients with maternal donors may provide key insights into the mechanisms of immune tolerance. SUMMARY: While excellent outcomes can be achieved in pediatric LDLT, there is still a measurable decrease in graft and patient survival over time post-transplant. Recipients of maternal donor liver transplants are a subset of patients who may be advantaged toward improved outcomes by means of immune tolerance.


Assuntos
Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto/imunologia , Transplante de Fígado/métodos , Doadores Vivos , Mães , Criança , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/mortalidade , Humanos , Transplante de Fígado/mortalidade , Transplante Homólogo , Resultado do Tratamento
20.
J Allergy Clin Immunol ; 141(3): 893-905.e6, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28579374

RESUMO

BACKGROUND: Allergic asthma is a prevalent inflammatory disease of the airways caused by dysregulated immune balance in the lungs with incompletely understood pathogenesis. The recently identified type 2 innate lymphoid cells (ILC2s) play significant roles in the pathogenesis of asthma. Although ILC2-activating factors have been identified, the mechanisms that suppress ILC2s remain largely unknown. Plasmacytoid dendritic cells (pDCs) are important in antiviral immunity and in maintaining tolerance to inert antigens. OBJECTIVE: We sought to address the role of pDCs in regulating ILC2 function and ILC2-mediated airway hyperreactivity (AHR) and lung inflammation. METHODS: We used several murine models, including BDCA-2-diphtheria toxin receptor (DTR) transgenic and IFN-α receptor 1-deficient mice, as well as purified primary ILC2s, to reach our objective. We extended and validated our findings to human ILC2s. RESULTS: We show that activation of pDCs through Toll-like receptor 7/8 suppresses ILC2-mediated AHR and airway inflammation and that depletion of pDCs reverses this suppression. We further show that pDCs suppress cytokine production and the proliferation rate while increasing the apoptosis rate of ILC2s through IFN-α production. Transcriptomic analysis of both human and murine ILC2s confirms the activation of regulatory pathways in ILC2s by IFN-α. CONCLUSION: Activation of pDCs alleviates AHR and airway inflammation by suppressing ILC2 function and survival. Our findings reveal a novel regulatory pathway in ILC2-mediated pulmonary inflammation with important clinical implications.


Assuntos
Asma/imunologia , Células Dendríticas/imunologia , Imunidade Inata , Plasmócitos/imunologia , Animais , Asma/genética , Asma/patologia , Células Dendríticas/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Plasmócitos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA