RESUMO
This study investigated the effects of Lactiplantibacillus plantarum 75 (LAB 75) fermentation at 37 °C for 48 h on the pH, total soluble solids (TSS), colour, total titratable acidity (TTA), carotenoids, and bioactivities of cowpea leaf smoothies from three cultivars (VOP 1, VOP 3, and VOP 4). Fermentation reduced the pH from 6.57 to 5.05 after 48 h. The TTA increased with the fermentation period, whilst the TSS reduced. Fermentation of the smoothies resulted in the least colour changes (∆E) in VOP 1 after 48 h. Fermentation of cowpea smoothies (VOP 1, VOP 3, and VOP 4) improved the antioxidant capacity (FRAP, DPPH, and ABTS), which was attributed to the increase in total phenolic compounds and carotenoid constituents in all of the fermented cowpea smoothies. VOP 1 was further selected for analysis due to its high phenolic content and antioxidant activity. The VOP 1 smoothie fermented for 24 h showed the lowest reduction in TPC (11%) and had the highest antioxidant (FRAP, DPPH, and ABTS) activity. Ltp. plantarum 75 was viable and survived the harsh conditions of the gastrointestinal tract, and, hence, could be used as a probiotic. VOP 1 intestinal digesta showed significantly higher glucose uptake relative to the undigested and the gastric digesta, while the gastric phase had higher levels of α-amylase and α-glucosidase compared to the undigested samples.
RESUMO
The purpose of this study was to investigate the bioaccessibilities of total phenolic compounds, carotenoid profile, antioxidant activity, and Lactic acid bacteria (LAB) survival in fermented mango juice (MJs) obtained from three mango cultivars after exposure to an in vitro gastrointestinal digestion model. The MJs from three cultivars ('Sabre', 'Peach', and 'Tommy Atkins') were fermented using Lactiplantibacillus plantarum 75 (L75), Leuconostoc pseudomesenteroides 56 (L56), and their combination (L56 + 75). Fermented MJs were digested and fractions: gastric (GF), intestinal (IF), and dialysis (DF) were analyzed for total polyphenolic content (TPC), antioxidant activity (FRAP), 1-diphenyl-2-picrylhydrazyl (DPPH), and 2.2-azinobis-3-ethyl-benzothiazoline-6-sulfonic acid (ABTS). In addition, the carotenoid content and the LAB population were determined from the GF and IF. After digestion, TPC decreased while fermentation improved its bioaccessibility. L75-fermented 'Sabre' MJs had the highest bioaccessible TPC in the GF (75.65%), IF (50.10%), and DF (32.52%) while L56 'Peach' MJs increased the ß-carotene bioaccessibility by 1.32-fold at GF and IF (1.21-fold). When compared to the other two juices, 'Sabre' and 'Peach' MJs fermented with L75 showed the highest IC50 values for DPPH and ABTS. Generally, L75-fermented 'Sabre' MJs had the highest LAB survival at both GF (7.57 Log CFU/mL) and IF (7.45 Log CFU/mL) and hold potential as probiotic juices. L56-fermented 'Sabre' MJs would ensure the delivery of four times the carotenoid recommended dietary allowance (RDA) to a target site in the body while L75-fermented 'Peach' MJs could be used to effectively counteract oxidants in the body system.
RESUMO
Two rootstock crosses of sweet melon and watermelon (Cucurbita moschata × Cucurbita maxima hybrids), 'Kickstart' and 'Carnivor', grafted onto four melon cultivars (cantaloups; 'Majestic', 'Hunter', 'Honeygoal' and 'Honeyval') were evaluated for quality, phytonutrient composition and volatile compounds in the 2020 and 2021 growing season at two harvests. Grafted fruits showed higher SSC/TA ratio, and antioxidant scavenging activity. Grafted 'Majestic/Carnivor' and 'Honeyval/ Carnivor' melons significantly increased the ascorbic acid content than the controls. 'Majestic/Carnivor' melons showed the highest ß- carotene and lutein than the controls. PLS-DA score plots discriminated the grafted cantaloupes and honeydew melons from controls based on the concentration of volatile compounds. Hexyl acetate and hexadecane respectively discriminated the grafted cantaloups and honeydew melons from ungrafted fruits. 'Carnivor' rootstocks showed higher expression of volatiles in the grafted cantaloupes and honeydew melons in the heat map. Panellists preferred Majestic/Carnivor' and 'Honeyval/ Carnivor' melons.
Assuntos
Citrullus , Cucumis melo , Cucurbita , Cucurbitaceae , Antioxidantes/metabolismo , Cucumis melo/metabolismo , Frutas , beta Caroteno/metabolismoRESUMO
The effects of lactic acid fermentation using Lactiplantibacillus plantarum 75 (L75), Leuconostoc pseudomesenteroides 56 (L56) and its combination (L56 + 75) on the quality, bioactive and volatile compounds of mango juices (MJ) from three cultivars ('Peach', 'Sabre' and 'Tommy Atkins') were investigated. Fermented and unfermented MJ were evaluated for LAB growth, physicochemical parameters, volatile compounds, antioxidants activities (DPPH, ABTS, FRAP methods), total phenolic content (TPC) and sensory properties. The unfermented juices served as a control. Twenty-four-hour fermentation was ideal for MJ based on LAB growth profiles. Generally, titratable acidity, TPC, FRAP, DPPH and ABTS scavenging activities significantly increased with fermentation by the L75 strain and were highest in the L75-fermented 'Sabre' MJ, while L75-fermented 'Peach' MJ had higher ABTS activity (p < 0.05). In contrast, the L56 strain enhanced ß-carotene retention, with improved colour properties in L56-fermented 'Peach' MJ. Fermentation with L75 in 'Sabre' and 'Peach' MJ aided the synthesis of new volatile compounds (alcohols, esters, ketones and aldehydes). A PLS-DA scatter plot showed two clusters separating the 'Peach' and 'Sabre' mango juice fermented with L75 from the rest. Based on the variable importance of the projection value (VIP) scores, pentadecane, 8-hexyl and butyl isobutyrate were shown as marker candidates to distinguish 'Peach' and 'Sabre' MJ fermented with L75 from the other treatments, whereas ethyl octanoate and isobutyl acetate differentiated the 'Sabre' MJ fermented with L75 from the other treatments. 'Sabre' and 'Peach' MJ fermented with L75 and L56 could provide antioxidants, meeting the recommended daily requirements for ascorbic acid and carotenoids in adults and teenagers. Hence, lactic acid fermentation of these local cultivars is a way to benefit consumers.
RESUMO
Biopolymeric systems that co-encapsulate probiotics and bioactive compounds ensure timely delivery in the gastrointestinal tract. Cyanidin 3-sambubioside is the dominant anthocyanin in Natal plum (Carissa macrocarpa). This study aims at the co-encapsulation of Natal plum (Carissa macrocarpa) juice inoculated with Lactiplantibacillus plantarum 75 (Ltp. plantarum 75) by freeze-drying using pea protein isolate, maltodextrin, and psyllium mucilage and evaluating their release in vitro. An encapsulation efficiency of >85% was noted in lactic acid bacteria (LAB) survival and anthocyanin content. Freeze-drying produced pinkish-red powder, rich in polyphenols and LAB (>6 Log CFU mL−1) after 14 days of storage. Natal plum juice + maltodextrin + pea protein isolate + psyllium mucilage + Ltp. plantarum 75 (NMPeaPsyB) showed the highest LAB population (6.74 Log CFU mL−1) with a survival rate of 81.9%. After digestion, NMPeaPsyB and NMPeaPsy had the highest LAB survival (>50%) at 67.5% and 67.5 ± 0.75%, respectively, and the highest bioaccessibility of cyanidin 3-sambubioside in Natal plum juice than the other co-encapsulation with other biopolymers. NMPeaPsy and NMPeaPsyB showed phenolic stability in the gastric phase and controlled release in the intestinal simulated phase. The antioxidant activities had strong correlations with cyanidin 3-sambubioside. The results confirmed that microencapsulation is important for improving stability and allowing for the development of functional foods.
RESUMO
The genus Fusarium produces a number of mycotoxins of diverse chemical structures. Fusariotoxins are secondary metabolites produced by toxigenic fungi of the genus Fusarium. The important and commonly encountered fusariotoxins are trichothecenes, fumonisins, and zearalenone. Fusarium mycotoxins pose varying toxicities to humans and/or animals after consumption of contaminated grain. They can cause acute or chronic illness and, in some cases, death. For instance, a range of Fusarium mycotoxins can alter different intestinal defense mechanisms, such as the epithelial integrity, cell proliferation, mucus layer, immunoglobulins, and cytokine production. Of recent concern is the occurrence of emerging and masked Fusarium mycotoxins in agricultural commodities, which may contribute to toxic health effects, although the metabolic fate of masked mycotoxins still remains a matter of scientific discussion. These mycotoxins have attracted attention worldwide because of their impact on human and animal health, animal productivity, and the associated economic losses. In this paper, we review Fusarium mycotoxins and their metabolites with the aim of summarizing the baseline information on the types, occurrence, and health impacts of these mycotoxins in order to encourage much-needed research on integrated management of this unavoidable food contaminant as concerns for food safety continues to grow worldwide.
Assuntos
Fumonisinas , Fusarium , Micotoxinas , Tricotecenos , Animais , Contaminação de Alimentos/análise , Inocuidade dos Alimentos , Fumonisinas/toxicidade , Humanos , Micotoxinas/análise , Tricotecenos/análiseRESUMO
Marble vine (Dioclea reflexa) seeds were roasted using the conditions in runs generated from Response Surface Methodology with temperature ranging from 110 to 200 °C and time (10-40 min). Proximate composition, antioxidant activities (DPPH, ABTS, FRAP, metal chelation OH and Lipid peroxidation) and Fourier Transform Infrared Spectroscopy (FTIR) were carried out on unroasted and roasted flours. Roasting increased the crude fibre content (2.74-5.08 %) of black variety compared to others. However, a slight denaturation of protein was observed when compared to unroasted samples. A significant increase in all the antioxidant activities compared to the control was also observed compared to unroasted flours. The FTIR showed functional groups such as ketones, aldehydes and carbonyl group upon roasting. Roasting temperature at (110 °C) had more effect than roasting time (10, 25 and 40 min). Hence, roasting at 110 °C could enable the release of food nutrients and improve the functionality of marble vine seed flour.
RESUMO
In this study, popularly consumed traditional chayote leaves and locally produced pineapple fruit were used to develop a fermented smoothie using lactic acid bacteria (LAB) strains: Lactobacillus plantarum (L75), Weissella cibaria (W64), and their combination (LW64 + 75). The physicochemical parameters [pH, total soluble solids (TSS), and color], total phenols, and carotenoid contents of the smoothies fermented for 48 h and stored for 7 days at 4°C were compared with the unfermented (control) smoothies. Results indicated that LAB fermentation reduced the pH from 3.56 to 2.50 after 48 h (day 2) compared with the non-fermented smoothie at day 2 (pH 3.37). LAB strain L75 significantly reduced the TSS content of the smoothies to 13.06°Bx after 2 days of fermentation. Smoothies fermented by L75 showed overall acceptability after 7 days of storage compared with the non-fermented puree on day 0. The LW64 + 75 significantly reduced the color change (ΔE), which was similar to the control. L75 increased the phenolic content, and W64 enhanced the total carotenoid content of the smoothies after 2 days of fermentation compared with other treatments. The use of an in vitro model simulating gastrointestinal (GI) digestion showed that fermentation with L75 improved the total phenol recovery by 65.96% during the intestinal phase compared with the control. The dialysis phase mimicked an epithelial barrier, and 53.58% of the recovered free soluble are bioavailable from the L75 fermented smoothies compared with the control. The antioxidant capacity of dialyzable fraction of the L75 fermented smoothie was significantly higher than that of the control and smoothies fermented with W64 or LW64 + 75.
RESUMO
The protein quality of complementary foods developed from fermented and unfermented sorghum, soybeans, and orange-fleshed sweet potato (OFSP) flour blends was evaluated using rat model. The test diet was as follows: UF2: unfermented sorghum (56%), soybean (17%), and OFSP (27%); UF3: unfermented sorghum (59%), soybean (31%), and OFSP (10%); F2: fermented sorghum (56%), soybean (17%), and OFSP (27%); and F3: fermented sorghum (59%), soybean (31%), and OFSP (10%), while cerelac served as positive control, corn starch (basal diet), and ogi (negative control). Forty-nine Wistar albino rats were grouped and fed with diets for 28 days. The growth, hematological, serum parameters of animals, protein quality, and proximate composition of developed diet were determined. Fermentation significantly improved the protein content and nutritional indices of experimental animals. Moisture content ranged from 2.5% to 9.24%, protein (7.09%-25.29%), ash (1.09%-3.71%), fat (10.28%-15.24%), and fiber (0.85%-3.17%). The biological values (BV) ranged from 75.11% to 78.44%. The weight gained in rat fed the formulated diet ranged from 46.0 g to 77.3 g and was highest in F3. The packed cell volume (PCV), hemoglobin concentration (HBC), red blood cell (RBC), and lymphocytes were highest in F3. Urea nitrogen and creatinine of the rats fed with formulated diets ranged from 3.58 to 15.32 mg/dl and 1.56 to 6.15 mg/dl, respectively. Sample F3 is a protein-rich complementary food that is comparable to ogi and suitable to manage malnutrition and support growth in children. However, clinical trials on the formulated diet are needed to further substantiate its nutritional potentials.
RESUMO
This study describes the impact of utilising different strains of lactic acid bacteria (LAB) for the fermentation of papaya puree and their effect on the quality parameters and bioaccessibility of phenolic compounds during simulated in vitro gastrointestinal digestion. Papaya was processed into puree; pasteurised and fermented at 37 °C for 2 days; and stored for 7 days at 4 °C using LAB strains Lactiplantibacillus plantarum 75 (L75*D2; L75*D7), Weissella cibaria64 (W64*D2; W64*D7) and Leuconostoc pseudomesenteroides 56 (L56*D2; L56*D7), respectively. Non-fermented samples at 0 (PPD0), 2 (PPD2) and 7 days (PPD7) served as controls. pH was reduced with fermentation and was lowest in L56*D2 (3.03) and L75*D2 (3.16) after storage. The colour change (ΔE) increased with the fermentation and storage of purees; L75*D7 showed the highest ΔE (13.8), and its sourness reduced with storage. The fermentation by W64*D7 and L75*D7 increased the % recovery of chlorogenic, vanillic, syringic, ellagic, ferulic acids, catechin, epicatechin and quercetin in the intestinal fraction compared to the L56*D7 and PPD7. Fermentation by W64*D7 and L75*D7 significantly improved the antioxidant capacity of the dialysed fraction compared to the L56*D7 or PPD7. L56*D7-fermented papaya puree showed the highest inhibitory effect of α-glucosidase activity followed by L75*D7. L75*D7 had a significantly higher survival rate. LAB fermentation affected the bioacessibilities of phenolics and was strain dependent. This study recommends the use of Lpb. plantarum 75 for fermenting papaya puree.
RESUMO
This study assessed the optimum roasting conditions on the phytochemical properties of three varieties of Dioclea reflexa seeds using response surface methodology. Roasting conditions were varied using temperature (110°C~200°C) and time (10~40 min). Phytochemical components (phenolics, tannin, flavonoids, cardiac glycoside, and steroids) of the seeds were screened and estimated. The study showed that availability of phytochemical activities was heat-dependent. An increase in roasting temperature beyond 110°C for 10 min resulted in a decrease in total phenolic (TP) and flavonoid (TF) contents. However, prolonged durations of roasting favored increased amounts of TP and TF in dark and light varieties. Total sterol, tannin, and cardiac glycoside contents increased with increasing roasting temperature and time. The desirability of the models were 0.76, 0.74, and 0.72 for black, dark brown, and light brown, respectively. The coefficients of regression (R2), ranged from 0.66 to 0.98 signifying accuracy of the model. The following models (cubic, quadratic, and 2 factor interaction) were significant (P≤0.05). We found that roasting time influenced the phytochemical properties of D. reflexa to a greater extent than temperature. The optimum roasting temperature and time was found to beat 110°C, 35 min, 40 min, and 32 min in black, dark brown, and light brown varieties, respectively. Roasting conditions significantly affects the phytochemical contents of three varieties of D. reflexa seed flour (P<0.05). Therefore, D. reflexa holds the potential to be used in development of functional foods and in therapeutic applications to promote health.
RESUMO
Weaning food was produced from the blends of sprouted and unsprouted sorghum-Irish potato, and groundnut flour. In the developed weaning foods, moisture content ranged from 8.44% to 12.70%, crude protein (7.40%-14.53%) crude ash (1.53%-1.77%), crude fiber (6.65%-6.88%), crude fat (3.31%-3.73%) and carbohydrate content (65.10%-69.15%). Sprouting and protein supplementation with groundnut improved the protein content of the formulated meals with values comparable to commercial sample (cereals). Mineral content reduced with sprouting, whereas the addition of Irish potato and groundnut increased the mineral content. Calcium ranged from 91.00% to 121.33% and potassium (487.33%-956.67%). Sample NSIG2 had the highest potassium. Tannin ranged from 0.11 to 0.64 mg/100 g; phytate (4.98-7.42 mg/100 g); and oxalate (0.36-0.98 mg/100 g). Peak viscosity ranged from 43.08 to 23.57 RVU, trough (41.08-22.50 RVU), breakdown viscosity (61-14), final viscosity (84.33-52.53 RVU), setback viscosity (41.33-89.00 RVU), and peak time (5.07-7.00) in both the sprouted and unsprouted sorghum-irish potato-groundnut flour, respectively. The pasting temperature of the weaning food blends ranged between 87.25 and 89.60°C with SIG0 and NSIG2 having the lowest and highest values, respectively. The study showed that complementary food products formulated from this locally available food commodities is a promising food and has good nutritive value.