Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Genet Metab ; 138(3): 107525, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36796138

RESUMO

Glycogen storage disease type IV (GSD IV) is an ultra-rare autosomal recessive disorder caused by pathogenic variants in GBE1 which results in reduced or deficient glycogen branching enzyme activity. Consequently, glycogen synthesis is impaired and leads to accumulation of poorly branched glycogen known as polyglucosan. GSD IV is characterized by a remarkable degree of phenotypic heterogeneity with presentations in utero, during infancy, early childhood, adolescence, or middle to late adulthood. The clinical continuum encompasses hepatic, cardiac, muscular, and neurologic manifestations that range in severity. The adult-onset form of GSD IV, referred to as adult polyglucosan body disease (APBD), is a neurodegenerative disease characterized by neurogenic bladder, spastic paraparesis, and peripheral neuropathy. There are currently no consensus guidelines for the diagnosis and management of these patients, resulting in high rates of misdiagnosis, delayed diagnosis, and lack of standardized clinical care. To address this, a group of experts from the United States developed a set of recommendations for the diagnosis and management of all clinical phenotypes of GSD IV, including APBD, to support clinicians and caregivers who provide long-term care for individuals with GSD IV. The educational resource includes practical steps to confirm a GSD IV diagnosis and best practices for medical management, including (a) imaging of the liver, heart, skeletal muscle, brain, and spine, (b) functional and neuromusculoskeletal assessments, (c) laboratory investigations, (d) liver and heart transplantation, and (e) long-term follow-up care. Remaining knowledge gaps are detailed to emphasize areas for improvement and future research.


Assuntos
Doença de Depósito de Glicogênio Tipo IV , Doença de Depósito de Glicogênio , Doenças Neurodegenerativas , Pré-Escolar , Humanos , Doença de Depósito de Glicogênio Tipo IV/diagnóstico , Doença de Depósito de Glicogênio Tipo IV/genética , Doença de Depósito de Glicogênio Tipo IV/terapia , Doença de Depósito de Glicogênio/diagnóstico , Doença de Depósito de Glicogênio/genética , Doença de Depósito de Glicogênio/terapia , Glicogênio
2.
Hum Mol Genet ; 28(11): 1782-1800, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649465

RESUMO

Charcot-Marie-Tooth disease (CMT) type 2A is a form of peripheral neuropathy, due almost exclusively to dominant mutations in the nuclear gene encoding the mitochondrial protein mitofusin-2 (MFN2). However, there is no understanding of the relationship of clinical phenotype to genotype. MFN2 has two functions: it promotes inter-mitochondrial fusion and mediates endoplasmic reticulum (ER)-mitochondrial tethering at mitochondria-associated ER membranes (MAM). MAM regulates a number of key cellular functions, including lipid and calcium homeostasis, and mitochondrial behavior. To date, no studies have been performed to address whether mutations in MFN2 in CMT2A patient cells affect MAM function, which might provide insight into pathogenesis. Using fibroblasts from three CMT2AMFN2 patients with different mutations in MFN2, we found that some, but not all, examined aspects of ER-mitochondrial connectivity and of MAM function were indeed altered, and correlated with disease severity. Notably, however, respiratory chain function in those cells was unimpaired. Our results suggest that CMT2AMFN2 is a MAM-related disorder but is not a respiratory chain-deficiency disease. The alterations in MAM function described here could also provide insight into the pathogenesis of other forms of CMT.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Retículo Endoplasmático/genética , GTP Fosfo-Hidrolases/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Adulto , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Retículo Endoplasmático/metabolismo , Metabolismo Energético/genética , Feminino , Fibroblastos/metabolismo , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Membranas Mitocondriais/metabolismo , Mutação , Fosforilação Oxidativa , Índice de Gravidade de Doença
3.
J Inherit Metab Dis ; 41(5): 877-883, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29110179

RESUMO

BACKGROUND: Adult polyglucosan body disease (APBD) is a progressive neurometabolic disorder caused by a deficiency of glycogen branching enzyme. We tested the efficacy of triheptanoin as a therapy for patients with APBD based on the hypothesis that decreased glycogen degradation leads to brain energy deficit. METHODS AND RESULTS: This was a two-site, randomized crossover trial of 23 patients (age 35-73 years; 63% men) who received triheptanoin or vegetable oil as placebo. The trial took place over 1 year and was followed by a 4-year open-label phase. Generalized linear mixed models were used to analyze this study. At baseline, using the 6-min walk test, patients could walk a mean of 389 ± 164 m (range 95-672; n = 19), highlighting the great clinical heterogeneity of our cohort. The overall mean difference between patients on triheptanoin versus placebo was 6 m; 95% confidence interval (CI) -11 to 22; p = 0.50. Motion capture gait analysis, gait quality, and stair climbing showed no consistent direction of change. All secondary endpoints were statistically nonsignificant after false discovery rate adjustment. Triheptanoin was safe and generally well tolerated. During the open-label phase of the study, the most affected patients at baseline kept deteriorating while mildly disabled patients remained notably stable up to 4 years. CONCLUSIONS: We cannot conclude that triheptanoin was effective in the treatment of APBD over a 6-month period, but we found it had a good safety profile. This study also emphasizes the difficulty of conducting trials in very rare diseases presenting with a wide clinical heterogeneity. ClinicalTrials.gov Identifier: NCT00947960.


Assuntos
Doença de Depósito de Glicogênio/tratamento farmacológico , Doenças do Sistema Nervoso/tratamento farmacológico , Triglicerídeos/uso terapêutico , Caminhada , Adulto , Idoso , Estudos Cross-Over , Avaliação da Deficiência , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Regressão , Resultado do Tratamento , Teste de Caminhada
4.
Am J Hum Genet ; 93(5): 906-14, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24119684

RESUMO

We used exome sequencing to identify mutations in sideroflexin 4 (SFXN4) in two children with mitochondrial disease (the more severe case also presented with macrocytic anemia). SFXN4 is an uncharacterized mitochondrial protein that localizes to the mitochondrial inner membrane. sfxn4 knockdown in zebrafish recapitulated the mitochondrial respiratory defect observed in both individuals and the macrocytic anemia with megaloblastic features of the more severe case. In vitro and in vivo complementation studies with fibroblasts from the affected individuals and zebrafish demonstrated the requirement of SFXN4 for mitochondrial respiratory homeostasis and erythropoiesis. Our findings establish mutations in SFXN4 as a cause of mitochondriopathy and macrocytic anemia.


Assuntos
Anemia Macrocítica/genética , Proteínas de Membrana/genética , Doenças Mitocondriais/genética , Adolescente , Animais , Criança , Eritropoese/genética , Exoma , Feminino , Técnicas de Silenciamento de Genes , Humanos , Proteínas Mitocondriais/genética , Mutação , Peixe-Zebra/genética
5.
Ann Neurol ; 76(6): 891-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25272951

RESUMO

We describe a slowly progressive myopathy in 7 unrelated adult patients with storage of polyglucosan in muscle fibers. Genetic investigation revealed homozygous or compound heterozygous deleterious variants in the glycogenin-1 gene (GYG1). Most patients showed depletion of glycogenin-1 in skeletal muscle, whereas 1 showed presence of glycogenin-1 lacking the C-terminal that normally binds glycogen synthase. Our results indicate that either depletion of glycogenin-1 or impaired interaction with glycogen synthase underlies this new form of glycogen storage disease that differs from a previously reported patient with GYG1 mutations who showed profound glycogen depletion in skeletal muscle and accumulation of glycogenin-1.


Assuntos
Glucosiltransferases/deficiência , Doença de Depósito de Glicogênio/diagnóstico , Doença de Depósito de Glicogênio/metabolismo , Glicoproteínas/deficiência , Músculo Esquelético/metabolismo , Adulto , Idoso , Feminino , Glucosiltransferases/genética , Doença de Depósito de Glicogênio/genética , Glicogênio Sintase/metabolismo , Glicoproteínas/genética , Humanos , Masculino , Pessoa de Meia-Idade
6.
Muscle Nerve ; 50(2): 292-5, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24711008

RESUMO

INTRODUCTION: A 61-year-old woman with a 5-year history of progressive muscle weakness and atrophy had a muscle biopsy characterized by a combination of dystrophic features (necrotic fibers and endomysial fibrosis) and mitochondrial alterations [ragged-red, cytochrome c oxidase (COX)-negative fibers]. METHODS: Sequencing of the whole mtDNA, assessment of the mutation load in muscle and accessible nonmuscle tissues, and single fiber polymerase chain reaction. RESULTS: Muscle mitochondrial DNA (mtDNA) sequencing revealed a novel heteroplasmic mutation (m.4403G>A) in the gene (MTTM) that encodes tRNA(Met). The mutation was not present in accessible nonmuscle tissues from the patient or 2 asymptomatic sisters. CONCLUSIONS: The clinical features and muscle morphology in this patient are very similar to those described in a previous patient with a different mutation, also in MTTM, which suggests that mutations in this gene confer a distinctive "dystrophic" quality. This may be a diagnostic clue in patients with isolated mitochondrial myopathy.


Assuntos
Distonia/genética , Miopatias Mitocondriais/genética , Mutação/genética , RNA de Transferência/genética , Distonia/complicações , Feminino , Humanos , Pessoa de Meia-Idade , Miopatias Mitocondriais/complicações
7.
Cell Death Dis ; 15(6): 405, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858390

RESUMO

Genetic mutations causing primary mitochondrial disease (i.e those compromising oxidative phosphorylation [OxPhos]) resulting in reduced bioenergetic output display great variability in their clinical features, but the reason for this is unknown. We hypothesized that disruption of the communication between endoplasmic reticulum (ER) and mitochondria at mitochondria-associated ER membranes (MAM) might play a role in this variability. To test this, we assayed MAM function and ER-mitochondrial communication in OxPhos-deficient cells, including cybrids from patients with selected pathogenic mtDNA mutations. Our results show that each of the various mutations studied indeed altered MAM functions, but notably, each disorder presented with a different MAM "signature". We also found that mitochondrial membrane potential is a key driver of ER-mitochondrial connectivity. Moreover, our findings demonstrate that disruption in ER-mitochondrial communication has consequences for cell survivability that go well beyond that of reduced ATP output. The findings of a "MAM-OxPhos" axis, the role of mitochondrial membrane potential in controlling this process, and the contribution of MAM dysfunction to cell death, reveal a new relationship between mitochondria and the rest of the cell, as well as providing new insights into the diagnosis and treatment of these devastating disorders.


Assuntos
Retículo Endoplasmático , Potencial da Membrana Mitocondrial , Mitocôndrias , Doenças Mitocondriais , Fosforilação Oxidativa , Humanos , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Mutação/genética , DNA Mitocondrial/metabolismo , DNA Mitocondrial/genética
8.
Hum Mol Genet ; 20(22): 4430-9, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21856731

RESUMO

Glycogen storage disease type IV (GSD IV) is a rare autosomal recessive disorder caused by deficiency of the glycogen branching enzyme (GBE). The diagnostic feature of the disease is the accumulation of a poorly branched form of glycogen known as polyglucosan (PG). The disease is clinically heterogeneous, with variable tissue involvement and age of disease onset. Absence of enzyme activity is lethal in utero or in infancy affecting primarily muscle and liver. However, residual enzyme activity (5-20%) leads to juvenile or adult onset of a disorder that primarily affects muscle as well as central and peripheral nervous system. Here, we describe two mouse models of GSD IV that reflect this spectrum of disease. Homologous recombination was used to insert flippase recognition target recombination sites around exon 7 of the Gbe1 gene and a phosphoglycerate kinase-Neomycin cassette within intron 7, leading to a reduced synthesis of GBE. Mice bearing this mutation (Gbe1(neo/neo)) exhibit a phenotype similar to juvenile onset GSD IV, with wide spread accumulation of PG. Meanwhile, FLPe-mediated homozygous deletion of exon 7 completely eliminated GBE activity (Gbe1(-/-)), leading to a phenotype of lethal early onset GSD IV, with significant in utero accumulation of PG. Adult mice with residual GBE exhibit progressive neuromuscular dysfunction and die prematurely. Differently from muscle, PG in liver is a degradable source of glucose and readily depleted by fasting, emphasizing that there are structural and regulatory differences in glycogen metabolism among tissues. Both mouse models recapitulate typical histological and physiological features of two human variants of branching enzyme deficiency.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/genética , Doença de Depósito de Glicogênio Tipo IV/genética , Animais , Modelos Animais de Doenças , Glucanos , Glicogênio/metabolismo , Doença de Depósito de Glicogênio Tipo IV/metabolismo , Camundongos
9.
Ann Clin Transl Neurol ; 7(11): 2186-2198, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33034425

RESUMO

OBJECTIVE: Adult polyglucosan body disease (APBD) is an adult-onset neurological variant of glycogen storage disease type IV. APBD is caused by recessive mutations in the glycogen branching enzyme gene, and the consequent accumulation of poorly branched glycogen aggregates called polyglucosan bodies in the nervous system. There are presently no treatments for APBD. Here, we test whether downregulation of glycogen synthesis is therapeutic in a mouse model of the disease. METHODS: We characterized the effects of knocking out two pro-glycogenic proteins in an APBD mouse model. APBD mice were crossed with mice deficient in glycogen synthase (GYS1), or mice deficient in protein phosphatase 1 regulatory subunit 3C (PPP1R3C), a protein involved in the activation of GYS1. Phenotypic and histological parameters were analyzed and glycogen was quantified. RESULTS: APBD mice deficient in GYS1 or PPP1R3C demonstrated improvements in life span, morphology, and behavioral assays of neuromuscular function. Histological analysis revealed a reduction in polyglucosan body accumulation and of astro- and micro-gliosis in the brains of GYS1- and PPP1R3C-deficient APBD mice. Brain glycogen quantification confirmed the reduction in abnormal glycogen accumulation. Analysis of skeletal muscle, heart, and liver found that GYS1 deficiency reduced polyglucosan body accumulation in all three tissues and PPP1R3C knockout reduced skeletal muscle polyglucosan bodies. INTERPRETATION: GYS1 and PPP1R3C are effective therapeutic targets in the APBD mouse model. These findings represent a critical step toward the development of a treatment for APBD and potentially other glycogen storage disease type IV patients.


Assuntos
Doença de Depósito de Glicogênio/metabolismo , Glicogênio Sintase/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Doenças do Sistema Nervoso/metabolismo , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Doença de Depósito de Glicogênio/fisiopatologia , Doença de Depósito de Glicogênio/terapia , Camundongos , Camundongos Knockout , Doenças do Sistema Nervoso/fisiopatologia , Doenças do Sistema Nervoso/terapia
10.
Neurology ; 91(11): e1077-e1082, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30111548

RESUMO

OBJECTIVE: To study the variable clinical picture and exercise tolerance of patients with phosphoglycerate kinase (PGK) 1 deficiency and how it relates to residual PGK enzyme activity. METHODS: In this case series study, we evaluated 7 boys and men from 5 families with PGK1 deficiency. Five had pure muscle symptoms, while 2 also had mild intellectual disability with or without anemia. Muscle glycolytic and oxidative capacities were evaluated by an ischemic forearm exercise test and by cycle ergometry. RESULTS: Enzyme levels of PGK were 4% to 9% of normal in red cells and 5% to10% in muscle in pure myopathy patients and 2.6% in both muscle and red cells in the 2 patients with multisystem involvement. Patients with pure myopathy had greater increases in lactate with ischemic exercise (2-3 mmol/L) vs the 2 multisystem-affected patients (<1 mmol/L). Myopathy patients had higher oxidative capacity in cycle exercise vs multisystem affected patients (≈30 vs ≈15 mL/kg per minute). One multisystem-affected patient developed frank myoglobinuria after the short exercise test. CONCLUSIONS: This case series study of PGK1 deficiency suggests that the level of impaired glycolysis in PGK deficiency is a major determinant of phenotype. Lower glycolytic capacity in PGK1 deficiency seems to result in multisystem involvement and increased susceptibility to exertional rhabdomyolysis.


Assuntos
Tolerância ao Exercício/fisiologia , Doenças Genéticas Ligadas ao Cromossomo X/enzimologia , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Erros Inatos do Metabolismo/enzimologia , Erros Inatos do Metabolismo/fisiopatologia , Fosfoglicerato Quinase/deficiência , Fosfoglicerato Quinase/metabolismo , Ergometria , Teste de Esforço , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Humanos , Deficiência Intelectual/sangue , Deficiência Intelectual/complicações , Deficiência Intelectual/enzimologia , Deficiência Intelectual/fisiopatologia , Ácido Láctico/sangue , Masculino , Erros Inatos do Metabolismo/complicações , Erros Inatos do Metabolismo/diagnóstico , Músculo Esquelético/metabolismo , Doenças Musculares/sangue , Doenças Musculares/complicações , Doenças Musculares/enzimologia , Doenças Musculares/fisiopatologia , Fenótipo , Fosfoglicerato Quinase/sangue
11.
JCI Insight ; 3(17)2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30185673

RESUMO

Adult polyglucosan body disease (APBD) is a late-onset disease caused by intracellular accumulation of polyglucosan bodies, formed due to glycogen-branching enzyme (GBE) deficiency. To find a treatment for APBD, we screened 1,700 FDA-approved compounds in fibroblasts derived from APBD-modeling GBE1-knockin mice. Capitalizing on fluorescent periodic acid-Schiff reagent, which interacts with polyglucosans in the cell, this screen discovered that the flavoring agent guaiacol can lower polyglucosans, a result also confirmed in APBD patient fibroblasts. Biochemical assays showed that guaiacol lowers basal and glucose 6-phosphate-stimulated glycogen synthase (GYS) activity. Guaiacol also increased inactivating GYS1 phosphorylation and phosphorylation of the master activator of catabolism, AMP-dependent protein kinase. Guaiacol treatment in the APBD mouse model rescued grip strength and shorter lifespan. These treatments had no adverse effects except making the mice slightly hyperglycemic, possibly due to the reduced liver glycogen levels. In addition, treatment corrected penile prolapse in aged GBE1-knockin mice. Guaiacol's curative effects can be explained by its reduction of polyglucosans in peripheral nerve, liver, and heart, despite a short half-life of up to 60 minutes in most tissues. Our results form the basis to use guaiacol as a treatment and prepare for the clinical trials in APBD.


Assuntos
Glucanos/metabolismo , Doença de Depósito de Glicogênio/tratamento farmacológico , Guaiacol/farmacologia , Doenças do Sistema Nervoso/tratamento farmacológico , Animais , Modelos Animais de Doenças , Fosfatases de Especificidade Dupla/genética , Fibroblastos , Glucose/metabolismo , Glicogênio/metabolismo , Glicogênio Sintase/efeitos dos fármacos , Glicogênio Sintase/metabolismo , Coração , Cinética , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nervos Periféricos/metabolismo , Fosforilação , Proteínas Tirosina Fosfatases não Receptoras , Ubiquitina-Proteína Ligases/genética
12.
Acta Myol ; 26(1): 75-8, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17915577

RESUMO

Deficiency of glycogen branching enzyme is causative of Glycogen Storage Disease type IV (GSD-IV), a rare autosomal recessive disorder of the glycogen synthesis, characterized by the accumulation of amylopectin-like polysaccharide, also known as polyglucosan, in almost all tissues. Its clinical presentation is variable and involves the liver or the neuromuscular system and different mutations in the GBE1 gene, located on chromosome 3, have been identified in both phenotypes. This review will addresses the neuromuscular clinical variants, focusing on the molecular genetics aspects of this disorder.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/deficiência , Doença de Depósito de Glicogênio Tipo IV/enzimologia , Doenças Neuromusculares/enzimologia , Polimorfismo de Nucleotídeo Único , Substituição de Aminoácidos , Animais , Cromossomos Humanos Par 3 , Modelos Animais de Doenças , Genótipo , Doença de Depósito de Glicogênio Tipo IV/genética , Humanos , Mutação , Doenças Neuromusculares/genética
13.
Neuromuscul Disord ; 26(1): 16-20, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26652229

RESUMO

Five Sardinian patients presented in their 5th or 6th decade with progressive limb girdle muscle weakness but their muscle biopsies showed vacuolar myopathy. The more or less abundant subsarcolemmal and intermyofibrillar vacuoles showed intense, partially α-amylase resistant, PAS-positive deposits consistent with polyglucosan. The recent description of late-onset polyglucosan myopathy has prompted us to find new genetic defects in the gene (GYG1) encoding glycogenin-1, the crucial primer enzyme of glycogen synthesis in muscle. We found a single homozygous intronic mutation harbored by five patients, who, except for two siblings, appear to be unrelated but all five live in central or south Sardinian villages.


Assuntos
Glucanos/genética , Glucosiltransferases/genética , Doença de Depósito de Glicogênio/genética , Glicoproteínas/genética , Mutação/genética , Doenças do Sistema Nervoso/genética , Adulto , Idoso , Análise Mutacional de DNA , Feminino , Homozigoto , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura
14.
Child Neurol Open ; 3: 2329048X15627937, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28503604

RESUMO

Dystonia is often associated with the symmetrical basal ganglia lesions of Leigh syndrome. However, it has also been associated with mitochondrial ND mutations, with or without Leber hereditary optic neuropathy. The m.14459G>A mutation in ND6 causes dystonia with or without familial Leber hereditary optic neuropathy. We report heteroplasmic 14459G>A mutations in 2 unrelated children with nonmaternally inherited generalized dystonia and showing bilateral magnetic resonance imaging lesions in nucleus pallidus and putamen. Both children have reached their teenage years, and they are intellectually active, despite their motor problems.

15.
JAMA Neurol ; 72(4): 441-5, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25665141

RESUMO

IMPORTANCE: We describe a deep intronic mutation in adult polyglucosan body disease. Similar mechanisms can also explain manifesting heterozygous cases in other inborn metabolic diseases. OBJECTIVE: To explain the genetic change consistently associated with manifesting heterozygous patients with adult polyglucosan body disease. DESIGN, SETTING, AND PARTICIPANTS: This retrospective study took place from November 8, 2012, to November 7, 2014. We studied 35 typical patients with adult polyglucosan body disease, of whom 16 were heterozygous for the well-known c.986A>C mutation in the glycogen branching enzyme gene (GBE1) but harbored no other known mutation in 16 exons. MAIN OUTCOMES AND MEASURES: All 16 manifesting heterozygous patients had lower glycogen branching activity compared with homozygous patients, which showed inactivation of the apparently normal allele. We studied the messenger ribonucleic acid (mRNA) structure and the genetic change due to the elusive second mutation. RESULTS: When we reverse transcribed and sequenced the mRNA of GBE1, we found that all manifesting heterozygous patients had the c.986A>C mutant mRNA and complete lack of mRNA encoded by the second allele. We identified a deep intronic mutation in this allele, GBE1-IVS15+5289_5297delGTGTGGTGGinsTGTTTTTTACATGACAGGT, which acts as a gene trap, creating an ectopic last exon. The mRNA transcript from this allele missed the exon 16 and 3'UTR and encoded abnormal GBE causing further decrease of enzyme activity from 18% to 8%. CONCLUSIONS AND RELEVANCE: We identified the deep intronic mutation, which acts as a gene trap. This second-most common adult polyglucosan body disease mutation explains another founder effect in all Ashkenazi-Jewish cases.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/genética , Sistema da Enzima Desramificadora do Glicogênio/genética , Doença de Depósito de Glicogênio/genética , Mutação/genética , Doenças do Sistema Nervoso/genética , Adulto , Alelos , Sequência de Bases , Heterozigoto , Homozigoto , Humanos , Íntrons , Estudos Retrospectivos
16.
J Child Neurol ; 28(2): 236-42, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22638077

RESUMO

Mutations in the mitochondrial DNA cytochrome b gene (MTCYB) have been commonly associated with isolated mitochondrial myopathy and exercise intolerance, rarely with multisystem disorders, and only once with a parkinsonism/mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS) overlap syndrome. Here, we describe a novel mutation (m.14864 T>C) in MTCYB in a 15-year-old girl with a clinical history of migraines, epilepsy, sensorimotor neuropathy, and strokelike episodes, a clinical picture reminiscent of MELAS.  The mutation, which changes a highly conserved cysteine to arginine at amino acid position 40 of cytochrome b, was heteroplasmic in muscle, blood, fibroblasts, and urinary sediment from the patient but absent in accessible tissues from her asymptomatic mother. This case demonstrates that MTCYB must be included in the already long list of mitochondrial DNA genes that have been associated with the MELAS phenotype.


Assuntos
Acidose Láctica/complicações , Citocromos b/genética , Encefalomiopatias Mitocondriais/genética , Mutação/genética , Acidente Vascular Cerebral/complicações , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Encefalomiopatias Mitocondriais/complicações , Encefalomiopatias Mitocondriais/diagnóstico , Lobo Parietal/patologia
17.
Prog Mol Biol Transl Sci ; 100: 369-88, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21377631

RESUMO

Glycogen is a polymer of glucose needed to provide for a continuous source of glucose during fasting. Glycogen synthesis and degradation are tightly controlled by complex regulatory mechanisms and any disturbance in this regulation can lead to an inadequate reservoir of glycogen or an accumulation of excess or abnormal glycogen stored either in the cytosol or in the lysosomes. Problems in the degradation or synthesis of glycogen are referred to as glycogen storage disorders (GSDs), which individually are rare diseases, yet collectively are a major category of inborn errors of metabolism in humans. To date, 11 distinct forms of GSDs are represented in animal models. These models provide a means to understand the mechanisms that regulate and execute the synthesis and degradation of glycogen. In this review, we summarize animal models that have arisen spontaneously in nature or have been engineered in the laboratory by recombinant DNA techniques, and categorize the disorders of glycogen metabolism as disorders of either synthesis or degradation.


Assuntos
Modelos Animais de Doenças , Doença de Depósito de Glicogênio/patologia , Animais , Glicogênio/biossíntese , Doença de Depósito de Glicogênio/metabolismo , Glicólise , Humanos
18.
Eur J Immunol ; 38(6): 1756-66, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18493987

RESUMO

A significant fraction of CD1d-restricted T cells express an invariant T cell receptor (TCR) alpha-chain. These highly conserved invariant NKT (iNKT) populations are important regulators of a wide spectrum of immune responses. The ability to directly identify and manipulate iNKT cells is essential to understanding their function and to exploit their therapeutic potential. To this end, we sought monoclonal and polyclonal antibodies specific for iNKT cells by immunizing CD1d KO mice, which lack iNKT cells, with a cyclic peptide modeled after the TCRalpha CDR3 loop. One mAb (6B11) was specific for cloned and primary human but not rodent iNKT cells and the human invariant TCRalpha, as shown by transfection and reactivity with human invariant TCRalpha transgenic T cells ex vivo and in situ. 6B11 was utilized to identify, purify, and expand iNKT cells from an otherwise minor component of human peripheral blood lymphocytes and to specifically identify human iNKT cells in tissue. Thus, we report a novel and general strategy for the generation of mAb specific for the CDR3 loop encoded by the TCR of interest. Specifically, an anti-Valpha24Jalpha18 CDR3 loop clonotypic TCR mAb is available for the enumeration and therapeutic manipulation of human and non-human primate iNKT populations.


Assuntos
Anticorpos Monoclonais/imunologia , Regiões Determinantes de Complementaridade/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Monitorização Imunológica/métodos , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Especificidade de Anticorpos/imunologia , Antígenos CD1/genética , Antígenos CD1d , Brônquios/química , Brônquios/citologia , Proliferação de Células/efeitos dos fármacos , Galactosilceramidas/farmacologia , Humanos , Interferon gama/metabolismo , Interleucina-4/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Fígado/química , Fígado/citologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Peptídeos/imunologia , Fito-Hemaglutininas/farmacocinética , Receptores de Antígenos de Linfócitos T/análise , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Baço/química , Baço/citologia , Vacinação
19.
Prenat Diagn ; 26(10): 951-5, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16874838

RESUMO

BACKGROUND: Glycogen storage disease type IV (GSD-IV) is a rare autosomal recessive disorder due to mutations in the GBE1 gene causing deficiency of the glycogen branching enzyme (GBE). Prenatal diagnosis has occasionally been performed by the measurement of the GBE activity in cultured chorionic villi (CV) cells. METHODS: Two unrelated probands with severe hypotonia at birth and death during the neonatal period were diagnosed with GSD-IV on the basis of postmortem histological findings. DNA analysis revealed truncating GBE1 mutations in both families. RESULTS: Prenatal diagnosis was performed in subsequent pregnancies by determination of branching enzyme activity and DNA analysis of CV or cultured amniocytes. Detailed autopsies of the affected fetuses at 14 and 24 weeks of gestation demonstrated intracellular inclusions of abnormal glycogen characteristic of GSD-IV. CONCLUSION: Prenatal diagnosis of GSD-IV by DNA analysis is highly accurate in genetically confirmed cases.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/genética , Doença de Depósito de Glicogênio Tipo IV/diagnóstico , Diagnóstico Pré-Natal , Aborto Eugênico , DNA/análise , Evolução Fatal , Feminino , Testes Genéticos , Doença de Depósito de Glicogênio Tipo IV/genética , Humanos , Recém-Nascido , Masculino , Mutação , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA