Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Neurosci ; 35(9): 4065-70, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25740533

RESUMO

Ribbon synapses of photoreceptor cells and bipolar neurons in the retina signal graded changes in light intensity via sustained release of neurotransmitter. One molecular specialization of retinal ribbon synapses is the expression of complexin protein subtypes Cplx3 and Cplx4, whereas conventional synapses express Cplx1 and Cplx2. Because complexins bind to the molecular machinery for synaptic vesicle fusion (the SNARE complex) and modulate transmitter release at conventional synapses, we examined the roles of ribbon-specific complexin in regulating release at ribbon synapses of ON bipolar neurons from mouse retina. To interfere acutely with the interaction of native complexins with the SNARE complex, a peptide consisting of the highly conserved SNARE-binding domain of Cplx3 was introduced via a whole-cell patch pipette placed directly on the synaptic terminal, and vesicle fusion was monitored using capacitance measurements and FM-dye destaining. The inhibitory peptide, but not control peptides, increased spontaneous synaptic vesicle fusion, partially depleted reserve synaptic vesicles, and reduced fusion triggered by opening voltage-gated calcium channels under voltage clamp, without affecting the number of synaptic vesicles associated with ribbons, as revealed by electron microscopy of recorded terminals. The results are consistent with a dual role for ribbon-specific complexin, acting as a brake on the SNARE complex to prevent spontaneous fusion in the absence of calcium influx, while at the same time facilitating release evoked by depolarization.


Assuntos
Proteínas do Olho/farmacologia , Proteínas do Tecido Nervoso/farmacologia , Neurotransmissores/metabolismo , Células Bipolares da Retina/fisiologia , Sinapses/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Adaptadoras de Transporte Vesicular , Animais , Proteínas do Olho/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Técnicas de Patch-Clamp , Vesículas Sinápticas/fisiologia
2.
J Neurosci ; 33(19): 8216-26, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23658160

RESUMO

Ribbon synapses of tonically releasing sensory neurons must provide a large pool of releasable vesicles for sustained release, while minimizing spontaneous release in the absence of stimulation. Complexins are presynaptic proteins that may accomplish this dual task at conventional synapses by interacting with the molecular machinery of synaptic vesicle fusion at the active zone to retard spontaneous vesicle exocytosis yet facilitate release evoked by depolarization. However, ribbon synapses of photoreceptor cells and bipolar neurons in the retina express distinct complexin subtypes, perhaps reflecting the special requirements of these synapses for tonic release. To investigate the role of ribbon-specific complexins in transmitter release, we combined presynaptic voltage clamp, fluorescence imaging, electron microscopy, and behavioral assays of photoreceptive function in zebrafish. Acute interference with complexin function using a peptide derived from the SNARE-binding domain increased spontaneous synaptic vesicle fusion at ribbon synapses of retinal bipolar neurons without affecting release triggered by depolarization. Knockdown of complexin by injection of an antisense morpholino into zebrafish embryos prevented photoreceptor-driven migration of pigment in skin melanophores and caused the pigment distribution to remain in the dark-adapted state even when embryos were exposed to light. This suggests that loss of complexin function elevated spontaneous release in illuminated photoreceptors sufficiently to mimic the higher release rate normally associated with darkness, thus interfering with visual signaling. We conclude that visual system-specific complexins are required for proper illumination-dependent modulation of the rate of neurotransmitter release at visual system ribbon synapses.


Assuntos
Quelantes/metabolismo , Neurotransmissores/metabolismo , Células Bipolares da Retina/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Quelantes/química , Quelantes/classificação , Adaptação à Escuridão/fisiologia , Exocitose/fisiologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas In Vitro , Masculino , Melanóforos/metabolismo , Microscopia Eletrônica de Transmissão , Proteínas do Tecido Nervoso/metabolismo , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Técnicas de Patch-Clamp , Retina/citologia , Células Bipolares da Retina/efeitos dos fármacos , Proteínas SNARE/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/ultraestrutura , Transmissão Sináptica/efeitos dos fármacos , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/fisiologia , Peixe-Zebra
3.
Proc Natl Acad Sci U S A ; 108(2): 852-7, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21187387

RESUMO

Target-derived neurotrophins use retrogradely transported Trk-signaling endosomes to promote survival and neuronal phenotype at the soma. Despite their critical role in neurotrophin signaling, the nature and molecular composition of these endosomes remain largely unknown, the result of an inability to specifically identify the retrograde signaling entity. Using EGF-bound nanoparticles and chimeric, EGF-binding TrkB receptors, we elucidate Trk-endosomal events involving their formation, processing, retrograde transport, and somal signaling in sympathetic neurons. By comparing retrograde endosomal signaling by Trk to the related but poorly neuromodulatory EGF-receptor, we find that Trk and EGF-receptor endosomes are formed and processed by distinct mechanisms. Surprisingly, Trk and EGF-receptors are both retrogradely transported to the soma in multivesicular bodies. However, only the Trk-multivesicular bodies rely on Pincher-dependent macroendocytosis and processing. Retrograde signaling through Pincher-generated Trk-multivesicular bodies is distinctively refractory to signal termination by lysosomal processing, resulting in sustained somal signaling and neuronal gene expression.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Endossomos/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Proteínas Nucleares/fisiologia , Receptor trkA/metabolismo , Transdução de Sinais , Animais , Endocitose , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia de Fluorescência/métodos , Células PC12 , Ratos , Proteínas rab5 de Ligação ao GTP/metabolismo
4.
Mol Vis ; 19: 917-26, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23687428

RESUMO

PURPOSE: Synaptic ribbons are organelles found at presynaptic active zones of sensory neurons that generate sustained graded electrical signals in response to stimuli, including retinal photoreceptor cells and bipolar neurons. RIBEYE is the major and specific protein constituent of ribbons; however, over the past decade an increasing number of other proteins have been identified at ribbon active zones, including C-terminal-binding protein 1 (CtBP1; a regulator of transcription and membrane trafficking that might bind to the B domain of RIBEYE). The appearance of CtBP1 together with RIBEYE suggests that it may contribute to ribbon function, but the possible role of CtBP1 at ribbon synapses has not yet been examined. Using CtBP1-knockout mice, we tested for functional effects of absence of CtBP1 protein. METHODS: Confocal microscopy, electrophysiology, and electron microscopy were used to examine the structure and function of ribbon synapses in the retina and in isolated bipolar neurons from CtBP1 null mice compared with their wild-type littermates. RESULTS: Expression of ribbons appeared to be normal in CtBP1 null mouse retina as revealed by immunofluorescence with an antibody to the B domain of RIBEYE and by binding studies using a fluorescent peptide that binds to RIBEYE in ribbons of living bipolar cells. Electron microscopy also showed grossly normal pre- and postsynaptic organization of ribbon synapses in both photoreceptors and bipolar cells. Synaptic vesicles were normal in size, but the overall density of reserve vesicles was reduced by ~20% in the cytoplasm of CtBP1 null ribbon synaptic terminals. However, the reduced vesicle density did not detectably alter synaptic function of bipolar neurons as revealed by activity-dependent loading of synaptic vesicles with FM4-64, presynaptic calcium current, capacitance measurements of synaptic exocytosis, and destaining of FM dye upon stimulation. CONCLUSIONS: Overall the results suggest that CtBP1 protein is not essential for the formation of functional ribbon synapses in the retina.


Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas de Ligação a DNA/metabolismo , Retina/metabolismo , Retina/ultraestrutura , Sinapses/metabolismo , Sinapses/ultraestrutura , Animais , Proteínas Correpressoras , Camundongos , Camundongos Knockout , Fosfoproteínas/metabolismo , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Células Bipolares da Retina/citologia , Células Bipolares da Retina/metabolismo , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura
5.
Front Neural Circuits ; 16: 978837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213206

RESUMO

Modulation of the release of glutamate by activation of presynaptic nicotinic acetylcholine receptors (nAChRs) is one of the most prevalent mechanism of nicotinic facilitation of glutamatergic transmission in cortico-limbic circuits. By imaging gene chimeric co-cultures from mouse, we examined the role of α7* nAChRs mediated cholinergic modulation of glutamate release and synaptic vesicle organization in ventral hippocampal projections. We directly visualized exogenous and endogenous cholinergic facilitation of glutamate release in this specialized preparation of circuits in vitro. Disrupting α7* nAChRs mediated cholinergic signaling genetically or pharmacologically diminished cholinergic facilitation of glutamate release at presynaptic terminals. Alteration of α7* nAChRs mediated cholinergic signaling along glutamatergic axons also decreased functional synaptic vesicle clustering to presynaptic terminals. These findings suggest that presynaptic α7* nAChRs contribute to cholinergic modulation of glutamate release and synaptic vesicle organization.


Assuntos
Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Axônios/metabolismo , Colinérgicos , Ácido Glutâmico , Hipocampo/metabolismo , Camundongos , Receptores Nicotínicos/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
6.
Mol Cell Neurosci ; 43(4): 403-13, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20123019

RESUMO

Activation of nascent receptor tyrosine kinases within the secretory pathway has been reported, yet the consequences of intracellular activation are largely unexplored. We report that overexpression of the Trk neurotrophin receptors causes accumulation of autoactivated receptors in the ER-Golgi intermediate compartment. Autoactivated receptors exhibit inhibited Golgi-mediated processing and they inhibit Golgi-mediated processing of other co-expressed transmembrane proteins, apparently by inducing fragmentation of the Golgi apparatus. Signaling from G protein-coupled receptors is known to induce Trk transactivation. Transactivation of nascent TrkB in hippocampal neurons resulting from exposure to the neuropeptide PACAP caused Golgi fragmentation, whereas BDNF-dependent activation of TrkB did not. TrkB-mediated Golgi fragmentation employs a MEK-dependent signaling pathway resembling that implicated in regulation of Golgi fragmentation in mitotic cells. Neuronal Golgi fragments, in the form of dendritically localized Golgi outposts, are important determinants of dendritic growth and branching. The capacity of transactivated TrkB to enhance neuronal Golgi fragmentation may represent a novel mechanism regulating neural plasticity.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Via Secretória/fisiologia , Western Blotting , Linhagem Celular , Células Cultivadas , Imunofluorescência , Humanos , Imunoprecipitação , Microscopia Confocal , Fosforilação/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Transporte Proteico/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Transfecção
7.
J Cell Biol ; 157(4): 679-91, 2002 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-12011113

RESUMO

A central tenet of nerve growth factor (NGF) action that is poorly understood is its ability to mediate cytoplasmic signaling, through its receptor TrkA, that is initiated at the nerve terminal and conveyed to the soma. We identified an NGF-induced protein that we termed Pincher (pinocytic chaperone) that mediates endocytosis and trafficking of NGF and its receptor TrkA. In PC12 cells, overexpression of Pincher dramatically stimulated NGF-induced endocytosis of TrkA, unexpectedly at sites of clathrin-independent macropinocytosis within cell surface ruffles. Subsequently, a system of Pincher-containing tubules mediated the delivery of NGF/TrkA-containing vesicles to cytoplasmic accumulations. These vesicles selectively and persistently mediated TrkA-erk5 mitogen-activated protein kinase signaling. A dominant inhibitory mutant form of Pincher inhibited the NGF-induced endocytosis of TrkA, and selectively blocked TrkA-mediated cytoplasmic signaling of erk5, but not erk1/2, kinases. Our results indicate that Pincher mediates pinocytic endocytosis of functionally specialized NGF/TrkA endosomes with persistent signaling potential.


Assuntos
Membrana Celular/metabolismo , Endossomos/metabolismo , Chaperonas Moleculares/isolamento & purificação , Fator de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/isolamento & purificação , Neurônios/metabolismo , Pinocitose/fisiologia , Receptor trkA/metabolismo , Sequência de Aminoácidos/genética , Animais , Sequência de Bases/genética , Membrana Celular/ultraestrutura , Endossomos/ultraestrutura , Espaço Extracelular/metabolismo , Imunofluorescência , Regulação da Expressão Gênica/fisiologia , Microscopia Eletrônica , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Mutação/genética , Proteínas do Tecido Nervoso/genética , Neurônios/ultraestrutura , Células PC12 , Fosforilação , Transporte Proteico/genética , Ratos , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/ultraestrutura
8.
Mol Brain ; 11(1): 2, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29335006

RESUMO

The adult brain actively controls its metabolic homeostasis via the circulatory system at the blood brain barrier interface. The mechanisms underlying the functional coupling from neuron to vessel remain poorly understood. Here, we established a novel method to genetically isolate the individual components of this coupling machinery using a combination of viral vectors. We first discovered a surprising non-uniformity of the glio-vascular structure in different brain regions. We carried out a viral injection screen and found that intravenous Canine Adenovirus 2 (CAV2) preferentially targeted perivascular astrocytes throughout the adult brain, with sparing of the hippocampal hilus from infection. Using this new intravenous method to target astrocytes, we selectively ablated these cells and observed severe defects in hippocampus-dependent contextual memory and the metabolically regulated process of hippocampal neurogenesis. Combined with AAV9 targeting of neurons and endothelial cells, all components of the neuro-glio-vascular machinery can be simultaneously labeled for genetic manipulation. Together, we demonstrate a novel method, which we term CATNAP (CAV/AAV Targeting of Neurons and Astrocytes Perivascularly), to target and manipulate the neuro-glio-vascular machinery in the adult brain.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/citologia , Neuroglia/metabolismo , Neurônios/metabolismo , Adenovirus Caninos/metabolismo , Adulto , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Sobrevivência Celular , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Feminino , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL
9.
Mol Biol Cell ; 15(1): 384-96, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14528013

RESUMO

Receptor-mediated trafficking of cholesterol between lipoproteins and cells is a fundamental biological process at the organismal and cellular levels. In contrast to the well-studied pathway of LDL receptor-mediated endocytosis, little is known about the trafficking of high-density lipoprotein (HDL) cholesterol by the HDL receptor, scavenger receptor BI (SR-BI). SR-BI mediates HDL cholesteryl ester uptake in a process in which HDL lipids are selectively transferred to the cell membrane without the uptake and degradation of the HDL particle. We report here the cell surface locale where the trafficking of HDL cholesterol occurs. Fluorescence confocal microscopy showed SR-BI in patches and small extensions of the cell surface that were distinct from sites of caveolin-1 expression. Electron microscopy showed SR-BI in patches or clusters primarily on microvillar extensions of the plasma membrane. The organization of SR-BI in this manner suggests that this microvillar domain is a way station for cholesterol trafficking between HDL and cells. The types of phospholipids in this domain are unknown, but SR-BI is not strongly associated with classical membrane rafts rich in detergent-resistant saturated phospholipids. We speculate that SR-BI is in a more fluid membrane domain that will favor rapid cholesterol flux between the membrane and HDL.


Assuntos
Antígenos CD36/metabolismo , Proteínas de Transporte , Caveolinas/metabolismo , Extensões da Superfície Celular/metabolismo , Colesterol/metabolismo , Lipoproteínas HDL , Proteínas de Membrana , Proteínas de Ligação a RNA , Receptores Imunológicos , Receptores de Lipoproteínas/metabolismo , Animais , Transporte Biológico/fisiologia , Células COS , Cavéolas , Caveolina 1 , Células Cultivadas , Chlorocebus aethiops , Camundongos , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Modelos Moleculares , Receptores Depuradores , Receptores Depuradores Classe B
10.
eNeuro ; 4(1)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28275713

RESUMO

Altered neuregulin 1 (Nrg1)/ErbB signaling and glutamatergic hypofunction have been implicated in the pathophysiology of schizophrenia. Here, we employed gene chimeric ventral hippocampus (vHipp)-nucleus accumbens (nAcc) coculture from mouse, electrophysiology, immunocytochemistry, FM1-43 vesicle fusion, and electron microscopy techniques to examine the pre- and postsynaptic mechanisms of genetic deficits in Nrg1/ErbB signaling-induced glutamatergic dysfunctions. Reduced presynaptic type III Nrg1 expression along vHipp axons decreases the number of glutamate synapses and impairs GluA2 trafficking in the postsynaptic nAcc neurons, resulting in decreased frequency and amplitude of miniature EPSCs (mEPSCs). Reduced expression of axonal type III Nrg1 along vHipp projections also decreases functional synaptic vesicle (SV) clustering and vesicular trafficking to presynaptic vHipp axonal terminals. These findings suggest that Nrg1/ErbB signaling modulate glutamatergic transmission via both pre- and postsynaptic mechanisms.


Assuntos
Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Neuregulina-1/metabolismo , Núcleo Accumbens/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Técnicas de Cocultura , Potenciais Pós-Sinápticos Excitadores , Hipocampo/ultraestrutura , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Potenciais Pós-Sinápticos em Miniatura , Neuregulina-1/genética , Núcleo Accumbens/ultraestrutura , Sinapses/ultraestrutura , Técnicas de Cultura de Tecidos
11.
J Neurosci ; 25(21): 5236-47, 2005 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-15917464

RESUMO

Retrograde signaling by neurotrophins is crucial for regulating neuronal phenotype and survival. The mechanism responsible for retrograde signaling has been elusive, because the molecular entities that propagate Trk receptor tyrosine kinase signals from the nerve terminal to the soma have not been defined. Here, we show that the membrane trafficking protein Pincher defines the primary pathway responsible for neurotrophin retrograde signaling in neurons. By both immunofluorescence confocal and immunoelectron microscopy, we find that Pincher mediates the formation of newly identified clathrin-independent macroendosomes for Trk receptors in soma, axons, and dendrites. Trk macroendosomes are derived from plasma membrane ruffles and subsequently processed to multivesicular bodies. Pincher similarly mediates macroendocytosis for NGF (TrkA) and BDNF (TrkB) in both peripheral (sympathetic) and central (hippocampal) neurons. A unique feature of Pincher-Trk endosomes is refractoriness to lysosomal degradation, which ensures persistent signaling through a critical effector of retrograde survival signaling, Erk5 (extracellular signal-regulated kinase 5). Using sympathetic neurons grown in chamber cultures, we find that block of Pincher function, which prevents Trk macroendosome formation, eliminates retrogradely signaled neuronal survival. Pincher is the first distinguishing molecular component of a novel mechanistic pathway for endosomal signaling in neurons.


Assuntos
Endocitose/fisiologia , Hipocampo/citologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Receptores de Fator de Crescimento Neural/metabolismo , Gânglio Cervical Superior/citologia , Animais , Animais Recém-Nascidos , Western Blotting/métodos , Sobrevivência Celular/fisiologia , Células Cultivadas , Diagnóstico por Imagem/métodos , Dinaminas/metabolismo , Embrião de Mamíferos , Endossomos/metabolismo , Endossomos/ultraestrutura , Fator de Crescimento Epidérmico/metabolismo , Imunofluorescência/métodos , Proteínas de Fluorescência Verde/metabolismo , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Microscopia Confocal/métodos , Microscopia Imunoeletrônica/métodos , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Biologia Molecular/métodos , Neurônios/ultraestrutura , Transporte Proteico/fisiologia , Interferência de RNA/fisiologia , RNA Mensageiro/biossíntese , Ratos , Ratos Sprague-Dawley , Receptor trkA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Transdução de Sinais/fisiologia , Transfecção/métodos
12.
Elife ; 52016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26880547

RESUMO

The cytomatrix at the active zone (CAZ) is a macromolecular complex that facilitates the supply of release-ready synaptic vesicles to support neurotransmitter release at synapses. To reveal the dynamics of this supply process in living synapses, we used super-resolution imaging to track single vesicles at voltage-clamped presynaptic terminals of retinal bipolar neurons, whose CAZ contains a specialized structure-the synaptic ribbon-that supports both fast, transient and slow, sustained modes of transmission. We find that the synaptic ribbon serves a dual function as a conduit for diffusion of synaptic vesicles and a platform for vesicles to fuse distal to the plasma membrane itself, via compound fusion. The combination of these functions allows the ribbon-type CAZ to achieve the continuous transmitter release required by synapses of neurons that carry tonic, graded visual signals in the retina.


Assuntos
Transporte Biológico , Terminações Pré-Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Animais Geneticamente Modificados , Substâncias Macromoleculares , Microscopia , Técnicas de Patch-Clamp , Peixe-Zebra
13.
Nat Neurosci ; 14(9): 1135-41, 2011 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-21785435

RESUMO

In vision, balance and hearing, sensory receptor cells translate sensory stimuli into electrical signals whose amplitude is graded with stimulus intensity. The output synapses of these sensory neurons must provide fast signaling to follow rapidly changing stimuli while also transmitting graded information covering a wide range of stimulus intensity and must be able to sustain this signaling for long time periods. To meet these demands, specialized machinery for transmitter release, the synaptic ribbon, has evolved at the synaptic outputs of these neurons. We found that acute disruption of synaptic ribbons by photodamage to the ribbon markedly reduced both sustained and transient components of neurotransmitter release in mouse bipolar cells and salamander cones without affecting the ultrastructure of the ribbon or its ability to localize synaptic vesicles to the active zone. Our results indicate that ribbons mediate both slow and fast signaling at sensory synapses and support an additional role for the synaptic ribbon in priming vesicles for exocytosis at active zones.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Retina/citologia , Células Bipolares da Retina/citologia , Sinapses/fisiologia , Vesículas Sinápticas/fisiologia , Oxirredutases do Álcool , Animais , Biofísica , Proteínas Correpressoras , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/farmacologia , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Exocitose/fisiologia , Técnicas In Vitro , Luz/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Técnicas de Patch-Clamp , Peptídeos/metabolismo , Peptídeos/farmacologia , Fosfoproteínas/metabolismo , Fosfoproteínas/farmacologia , Ligação Proteica/efeitos dos fármacos , Células Bipolares da Retina/ultraestrutura , Sinapses/efeitos dos fármacos , Sinapses/ultraestrutura , Vesículas Sinápticas/ultraestrutura , Fatores de Tempo , Urodelos
14.
Proc Natl Acad Sci U S A ; 104(30): 12270-5, 2007 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-17640889

RESUMO

Why neurotrophins and their Trk receptors promote neuronal differentiation and survival whereas receptor tyrosine kinases for other growth factors, such as EGF, do not, has been a long-standing question in neurobiology. We provide evidence that one difference lies in the selective ability of Trk to generate long-lived signaling endosomes. We show that Trk endocytosis is distinguished from the classical clathrin-based endocytosis of EGF receptor (EGFR). Although Trk and EGFR each stimulate membrane ruffling, only Trk undergoes both selective and specific macroendocytosis at ruffles, which uniquely requires the Rho-GTPase, Rac, and the trafficking protein, Pincher. This process leads to Trk-signaling endosomes, which are immature multivesicular bodies that retain Rab5. In contrast, EGFR endosomes rapidly exchange Rab5 for Rab7, thereby transiting into late-endosomes/lysosomes for degradation. Sustained endosomal signaling by Trk does not reflect intrinsic differences between Trk and EGFR, because each elicits long-term Erk-kinase activation from the cell surface. Thus, a population of stable Trk endosomes, formed by specialized macroendocytosis in neurons, provides a privileged endosome-based system for propagation of signals to the nucleus.


Assuntos
Endocitose , Endossomos/metabolismo , Receptor trkA/metabolismo , Transdução de Sinais , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Membrana Celular/metabolismo , Endossomos/enzimologia , Receptores ErbB/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Células PC12 , Fosforilação , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Técnicas de Cultura de Tecidos , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas rac de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA