Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Omega ; 8(29): 26065-26078, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37521654

RESUMO

In this study, dual S-scheme ZnIn2S4-Al2O3-ZnO (ZIS-Al-Zn) heterojunctions were produced by a facile, low cost, and rapid combustion technique. These heterojunctions accelerated the photocatalytic hydrogen production due to the multi-channel-promoted separation of photocarriers. By optimizing the content of the components, the synthesized ZIS-Al-Zn composite with 20 wt% of ZnIn2S4 and 30 wt% of Al2O3 in the ZIS-Al-Zn composite demonstrated the highest hydrogen production rate of 54.2 mmol g-1 h-1, which was nearly 11 and 8.30 times better than ZnO-Al2O3 and ZnO-ZnIn2S4 composites, respectively. The results of DRS, PL, EIS, LSV, and CV techniques showed the highest shift in the light absorption, rapid interfacial transfer, and quenched recombination of photocarriers over the ternary ZIS-Al-Zn composite than single and binary catalysts. The obtained results revealed the formation of a dual S-scheme mechanism of transfer of photocarriers in ZIS-Al-Zn heterojunctions, contributing to better hydrogen production efficiency. The optimized ZIS-Al-Zn composite also exhibited good stability and reusability.

2.
ACS Omega ; 8(31): 28924-28931, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576690

RESUMO

Temperature plays a crucial role in the preparation of polyvinyl chloride (PVC) gels for optical applications. Incorrect temperature selection can lead to various issues such as poor surface roughness, inadequate light transmission, and insufficient solution for optical devices. To address this challenge, this study focuses on the preparation of PVC gel samples by combining PVC powder (n = 3000), eco-friendly dibutyl adipate, and tetrahydrofuran at different stirring temperatures ranging from 40 to 70 °C. The PVC gel preparation process is categorized into four groups (T40, T50, T60, and T70) based on the mixing temperatures, employing a controlled test method with specific temperature conditions. The prepared PVC gel samples are then subjected to analysis to evaluate various properties including surface morphology, tensile strength, light transmittance, and electrical response time. Among the samples, the PVC gel prepared at 60 °C (referred to as T60) exhibits excellent optical properties, with a transmittance of 91.2% and a tensile strength of 2.07 MPa. These results indicate that 60 °C is an optimal reaction temperature. Notably, the PVC gel microlenses produced at this temperature achieve their maximum focal length (ranging from -8 to -20 mm) within approximately 60 s, and they recover their initial state within around 80 s after the power is switched off. This focal length achievement is twice as fast as reported in previous studies on microlenses. It is observed that the reaction temperature significantly influences the solubility of the resin-based raw materials and the homogeneity of the gel. Consequently, these findings open up possibilities for utilizing PVC gel microlenses in novel commercial optics applications, thanks to their desirable properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA