Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Virol J ; 20(1): 37, 2023 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841795

RESUMO

Since December 2019, various types of strategies have been applied due to the emergent need to investigate the biology and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to discover a functional treatment. Different disease modeling systems, such as mini-organ technology, have been used to improve our understanding of SARS-CoV-2 physiology and pathology. During the past 2 years, regenerative medicine research has shown the supportive role of organoid modeling in controlling coronavirus disease 2019 (COVID-19) through optimal drug and therapeutic approach improvement. Here, we overview some efforts that have been made to study SARS-CoV-2 by mimicking COVID-19 using stem cells. In addition, we summarize a perspective of drug development in COVID-19 treatment via organoid-based studies.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Tratamento Farmacológico da COVID-19 , Organoides
2.
J Pediatr Genet ; 13(1): 1-5, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38567172

RESUMO

Next-generation sequencing, such as whole-exome sequencing (WES), is increasingly used in the study of Mendelian disorders, yet many are reported as "negative." Inappropriate variant annotation and filtering steps are reasons for missing the molecular diagnosis. Noncoding variants, including splicing mutations, are examples of variants that can be overlooked. Herein, we report a family of four affected newborns, and all presented with severe congenital microcephaly. Initial research WES analysis identified a damaging homozygous variant in NME1 gene as a possible cause of primary microcephaly phenotype in these patients. However, reanalysis of the exome data uncovered a biallelic splice site variant in asparagine synthetase gene which seems to be the possible cause of the phenotype in these patients. This study highlights the importance of revisiting the exome data and the issue of "negative" exome and the afterward approaches to identify and prove new candidate genes.

3.
Eur J Med Genet ; 67: 104903, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101565

RESUMO

LRP4 is expressed in many organs. It mediates SOST-dependent inhibition of bone formation and acts as an inhibitor of WNT signaling. It is also a postsynaptic end plate cell surface receptor at the neuromuscular junction and is central to its development, maintenance, and function. Pathogenic variants of LRP4 that specifically affect the canonical WNT signaling pathway are known to be associated with Cenani-Lenz syndactyly syndrome or the overlapping condition sclerosteosis. However, site-specific pathogenic variants of LRP4 have been associated with the congenital myasthenic syndrome (CMS) type 17 with no abnormal bone phenotype. Only two studies reported biallelic variants of LRP4 associated with CMS17 that presented during childhood. All three reported variants (NM_002334.4: p.Glu1233Ala, p.Glu1233Lys, or p.Arg1277His) are located within the 3'-edge of the third ß-propeller domain of LRP4. We report on a patient with a biallelic variant of the LRP4 gene presenting with a severe and neonatal lethal phenotype; we also provide a literature review of the previously reported patients. A female neonate, born to healthy consanguineous parents, presented with severe hypotonia, congenital diaphragmatic hernia, pulmonary hypertension, and progressive hypoxemia. Two of her siblings presented with a similar condition in the past, and all three died shortly after birth. Clinical exome sequencing revealed homozygosity for the pathogenic variant NM_002334.4:c.3698A > C (p.[Glu1233Ala]).


Assuntos
Hiperostose , Síndromes Miastênicas Congênitas , Sindactilia , Feminino , Humanos , Recém-Nascido , Proteínas Relacionadas a Receptor de LDL/genética , Síndromes Miastênicas Congênitas/genética , Junção Neuromuscular , Sindactilia/genética , Masculino
4.
Mov Disord Clin Pract ; 8(8): 1253-1257, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34765690

RESUMO

BACKGROUND: PTRHD1 was proposed as a disease-causing gene of intellectual disability, spasticity, and parkinsonism. OBJECTIVES: To characterize the clinical phenotype and the molecular cause of intellectual disability in four affected individuals of a consanguineous family. METHODS: Clinical evaluation, whole-exome sequencing, Sanger sequencing, reverse transcription polymerase chain reaction (PCR), real-time PCR, immunoblot, and isoelectric focusing. RESULTS: A homozygous 28-nucleotide frameshift deletion introducing a premature stop codon in the PTRHD1 exon 1 was identified in the four affected members. We further confirmed the apparent transcript escape of the nonsense-mediated messenger RNA (mRNA) decay pathway. Real-time PCR showed that mRNA expression of the mutant PTRHD1 is higher compared to the wild-type. Western blotting and isoelectric focusing identified a truncated, but stable mutant PTRHD1 protein expressed in the patient's primary cells. CONCLUSIONS: We provide further evidence that PTRHD1 mutations are associated with autosomal-recessive childhood-onset intellectual disability associated with spasticity and parkinsonism.

5.
Cancers (Basel) ; 12(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882852

RESUMO

High levels of the cold shock protein Y-box-binding protein-1, YB-1, are tightly correlated with increased cell proliferation and progression. However, the precise mechanism by which YB-1 regulates proliferation is unknown. Here, we found that YB-1 depletion in several cancer cell lines and in immortalized fibroblasts resulted in cytokinesis failure and consequent multinucleation. Rescue experiments indicated that YB-1 was required for completion of cytokinesis. Using confocal imaging we found that YB-1 was essential for orchestrating the spatio-temporal distribution of the microtubules, ß-actin and the chromosome passenger complex (CPC) to define the cleavage plane. We show that phosphorylation at six serine residues was essential for cytokinesis, of which novel sites were identified using mass spectrometry. Using atomistic modelling we show how phosphorylation at multiple sites alters YB-1 conformation, allowing it to interact with protein partners. Our results establish phosphorylated YB-1 as a critical regulator of cytokinesis, defining precisely how YB-1 regulates cell division.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA