Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Chem ; 72: 74-79, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28371664

RESUMO

In the present study, a series of fourteen 5-benzoyl-4-methyl-1,3,4,5-tetrahydro-2H-1,5-benzodiazepin-2-one derivatives were designed, synthesized and characterized by appropriate spectral analysis. Further, titled compounds were in-vitro screened against wild HIV-1 RT enzyme using ELISA based colorimetric assay, in which four compounds significantly inhibited the RT activity with IC50≤25µM. Moreover, two significantly active compounds of the series, A10 and A11 exhibited IC50 values 8.62 and 6.87µM respectively, during the in-vitro assay. Structure Activity Relationship (SAR) studies were performed for the synthesized compounds in order to estimate the effect of substitution pattern on the RT inhibitory potency. The cytotoxicity of the synthesized compounds was evaluated against T lymphocytes. Further, putative binding modes of the significantly active (A11) and the least active (A4) compounds with wild HIV-1 RT were also investigated using docking studies.


Assuntos
Benzodiazepinas/farmacologia , Transcriptase Reversa do HIV/antagonistas & inibidores , Inibidores da Transcriptase Reversa/farmacologia , Benzodiazepinas/síntese química , Benzodiazepinas/química , Linfócitos T CD4-Positivos , Relação Dose-Resposta a Droga , Transcriptase Reversa do HIV/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/química , Relação Estrutura-Atividade
2.
Pharmaceuticals (Basel) ; 17(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38794220

RESUMO

It has been more than four years since the first report of SARS-CoV-2, and humankind has experienced a pandemic with an unprecedented impact. Moreover, the new variants have made the situation even worse. Among viral enzymes, the SARS-CoV-2 main protease (Mpro) has been deemed a promising drug target vs. COVID-19. Indeed, Mpro is a pivotal enzyme for viral replication, and it is highly conserved within coronaviruses. It showed a high extent of conservation of the protease residues essential to the enzymatic activity, emphasizing its potential as a drug target to develop wide-spectrum antiviral agents effective not only vs. SARS-CoV-2 variants but also against other coronaviruses. Even though the FDA-approved drug nirmatrelvir, a Mpro inhibitor, has boosted the antiviral therapy for the treatment of COVID-19, the drug shows several drawbacks that hinder its clinical application. Herein, we report the synthesis of new thiazolidine-4-one derivatives endowed with inhibitory potencies in the micromolar range against SARS-CoV-2 Mpro. In silico studies shed light on the key structural requirements responsible for binding to highly conserved enzymatic residues, showing that the thiazolidinone core acts as a mimetic of the Gln amino acid of the natural substrate and the central role of the nitro-substituted aromatic portion in establishing π-π stacking interactions with the catalytic His-41 residue.

3.
IUCrdata ; 6(Pt 10): x211077, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36342890

RESUMO

[This corrects the article DOI: 10.1107/S2414314617002346.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA