Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293326

RESUMO

The mammalian target of rapamycin (mTOR) is the major controller of a number of important cellular activities, including protein synthesis, cell expansion, multiplication, autophagy, lysosomal function, and cellular metabolism. When mTOR interacts with specific adaptor proteins, it forms two complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). The mTOR signaling system regulates gene transcription and protein manufacturing to control proliferation of cell, differentiation of immune cell, and tumor metabolism. Due to its vital role in case of microbial infections, inflammations and cancer development and progression, mTOR has been considered as a key therapeutic target for the development of targeted medication. As autophagy dysfunction is linked to changes in both innate and adaptive immune responses, bacterial clearance defects, and goblet and Paneth cell malfunction, all of these changes are linked to inflammatory bowel diseases (IBD) and colorectal cancer (CRC) pathogenesis. Preclinical and clinical data have shown that the inhibition and induction of autophagy have significant potential to be translated into the clinical applications. In IBD and several CRC models, mTORC1 inhibitors have been found effective. In the recent years, a number of novel mTOR inhibitors have been investigated in clinical trials, and a number of drugs have shown considerably enhanced efficacy when combined with mTOR inhibitors. The future developments in the mTOR targeting medications can benefit patients in individualized therapy. Advanced and innovative medicines that are more effective and have lower drug resistance are still in high demand. New findings could be relevant in medicine development, pharmacological modification, or future mTOR inhibitor research. Therefore, the goal of this review is to present a comprehensive account of current developments on the mTOR pathway and its inhibitors, with an emphasis on the management of microbial infections, the treatment of inflammatory bowel disease, and the management of colon cancer.


Assuntos
Neoplasias Colorretais , Doenças Inflamatórias Intestinais , Humanos , Inibidores de MTOR , Serina-Treonina Quinases TOR , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Neoplasias Colorretais/patologia
2.
Heliyon ; 10(19): e38625, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39430469

RESUMO

Background: Type 2 diabetes mellitus (T2DM) is defined by a wide variety of metabolic abnormalities, persistent hyperglycemia, and a slew of other complications. Catharanthus roseus L. (apocyanaceae), remarkably notable as Vinca Rosea, appears to be the source of the active component hirsutidin, which is reported in various diseases. Objective: The study intended to appraise the antidiabetic capability of hirsutidin in a high-fat diet (HFD) and streptozotocin (STZ) induced diabetes in experimental rats. Materials and methods: An experimental rodent T2DM model was elicited by consuming an HFD regimen with STZ 50 mg/kg, i.p. dose formulated in a 0.1 M cold citrate buffer (pH 4.5). The test drug hirsutidin (10 and 20 mg/kg) and the standard drug glimeclamide (5 mg/kg) were administered daily for six weeks. The efficacy of hirsutidin was observed on several diabetes parameters. The average body weight and an array of biochemical markers were determined, including blood glucose, insulin, dyslipidemia (lipid profile), total protein (TP), liver injury [aspartate aminotransferase (AST), alanine aminotransferase (ALT)], inflammation [IL-6, IL-1ß, tumor necrosis factor-α (TNF-α)], oxidative stress [malondialdehyde (MDA)] and antioxidant status [catalase (CAT), glutathione (GSH), and superoxide dismutase (SOD)]. In addition, the concentrations of leptin, adiponectin, and resistin were also assessed. Also, molecular docking studies were undertaken to investigate critical targets associated with diabetes, including TNF-α, insulin, adiponectin, and leptin. Results: Diabetes induction with HFD/STZ resulted in hyperglycemia (significantly reduced blood glucose and increased insulin level), dyslipidemia (significantly reduced TC, TG and increased HDL), total protein (significantly reduced), oxidative stress and antioxidant status (significantly reduced MDA and increased CAT, SOD and GSH levels), inflammation (significantly decreased IL-6, IL-1ß, TNF-α), liver damage (significantly reduced AST, ALT), and specific hormones such as adiponectin, leptin significantly improved and resistin significantly reduced as evidenced by biochemical data in this study. Intermolecular interactions of ligands and docking score, hirsutidin proteins TNF-α (2AZ5), Insulin (4IBM), Adiponectin (6KS1), Leptin (7Z3Q) with binding energy of -6.708, -7.674, -7.2 and -7.547 Kcal/mol. Conclusion: Hirsutidin may have an evidential hypoglycemic outcome and may exhibit potent antidiabetic activity in HFD/STZ-induced T2DM in rats. Treatment with hirsutidin significantly improved glycemic control, lipid metabolism, oxidative stress, inflammation, and liver function. Additionally, it normalized dysregulated levels of adiponectin, leptin, and resistin. Molecular docking confirmed its strong binding affinity to key diabetic targets.

3.
Pathol Res Pract ; 262: 155520, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39217771

RESUMO

Carcinoma of the colon and rectum, also known as colorectal cancer, ranks as the third most frequently diagnosed malignancy globally. Sorafenib exhibits broad-spectrum antitumor activity against Raf, VEGF, and PDGF pathways in hepatocellular, thyroid, and renal cancers, but faces resistance in colorectal malignancies. 6-Shogaol, a prominent natural compound found in Zingiberaceae, exhibits antioxidant, anti-inflammatory, anticancer, and antiemetic properties. We investigated the influence of 6-shogaol on sorafenib's cytotoxic profile against colorectal cancer cell lines (HT-29, HCT-116, CaCo-2, and LS174T) through its effects on cellular accumulation and metabolism. Cytotoxicity was assessed using the sulpharodamine B assay, caspase-3 and c-PARP cleavage, cell cycle distribution analysis, and P-gp efflux activity. 6-Shogoal showed considerable cytotoxicity with decreased IC50 in colorectal cancer cell lines. Combining sorafenib and 6-shogaol increased c-PARP and pro-caspase-3 concentrations in HCT-116 cells compared to sorafenib alone. In combination, pro-caspase-3 concentrations were decreased in CaCo-2 cells compared to alone. Sorafenib combinations with 6-shogaol showed a significant drop in cell cycle distribution from 16.96±1.10 % to 9.16±1.85 %, respectively. At 100 µM, sorafenib and 6-shogaol showed potent and significant activity with intra-cellular rhodamine concentration on P-gp efflux activity in CRC cell lines. In conclusion, 6-shogaol substantially improved the cytotoxic profile of sorafenib by affecting its cellular uptake and metabolism. Future research should focus on dosage optimization and formulation and evaluate the efficacy and safety of the combination in animal models with colorectal cancer.


Assuntos
Catecóis , Neoplasias Colorretais , Sorafenibe , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Sorafenibe/farmacologia , Catecóis/farmacologia , Antineoplásicos/farmacologia , Sinergismo Farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Células CACO-2 , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
4.
Pharmaceuticals (Basel) ; 17(10)2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39458989

RESUMO

Background/Objectives: 6-Shogaol is a comparatively innovative anti-Parkinson's remedy with antioxidant and anti-inflammatory characteristics. This investigation intended to determine the role of 6-shogaol in the Parkinson's disease (PD) paradigm in rotenone-induced rats. Methods: Thirty male Wistar rats (10-12 weeks old; 180 ± 20 g) were divided into five groups. Animals with rotenone-induced experimental PD were subsequently treated with 6-shogaol-10 at 20 mg/kg for 28 days. After the experimental duration, behavioural investigations were performed, i.e., open field test, forced swim test, rotarod test, and catalepsy test. Biochemical assessments like AChE, GSH, CAT, SOD, MDA, nitrite, ceruloplasmin, proinflammatory markers such as IL-1ß, NF-κB, TNF-α, and catecholamines markers (DA, GABA, and MAO-B) were determined. The docking procedure was conducted using the AutoDock Vina docking protocol. Furthermore, histopathology was performed. Results: Rotenone significantly increased the level of MAO-B, oxidative, nitrative, and pro-inflammatory markers. However, there was a decline in ceruloplasmin, dopamine, and endogenous antioxidants. Treatment with 6-shogaol (10 and 20 mg/kg) considerably sustained the elevation of oxidative stress and inflammatory indicators and decreased AChE activity and dopamine levels. In the histology of the brain, 6-shogaol improved the neuronal structure and reduced the degeneration of neurons. Based on the binding energy values, compound 6-shogaol demonstrates a favourable binding affinity to AChE, MAO-B, DA, and GABA with respective binding energies of -8.214, -8.133, -7.396 and -6.189 kcal/mol. Conclusions: In this study, 6-shogaol exhibited neuroprotective properties against PD, which could be employed as a prospective medication for PD.

5.
Curr Med Chem ; 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39473201

RESUMO

INTRODUCTION: Fustin, a photogenic flavanol found in the plant Rhus verniciflua Stokes, has been involved in multiple disease ailments and has a beneficial pharmacological effect and a history of use in traditional medicine. The present research aimed to study the impact of fustin on scopolamine (SCOP)-induced memory impairment and neurodegeneration by modulating neuroinflammation and neurotransmitters in rats. METHODS: A total of 30 healthy Wistar rats were allocated into five groups (n=6). Group I- served as control and received saline solution (1mL/kg i.p.), group -II- fustin (100 mg/kg, orally), group -III -SCOP (1 mg/kg, i.p.), and group -IV and V were given fustin (50 and 100 mg/kg/p.o.) with SCOP (1 mg/kg, i.p.) for 14-days. After 14 days, 2 hours after SCOP injection, the Y-maze and Morris water maze (MWM) tests were performed. After behavioral tests rats were subsequently euthanized, and brain supernatants were used to estimate choline-acetyltransferase (ChAT), acetylcholinesterase (AChE), antioxidant [superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH)], and total protein, oxidative stress markers [nitrate and malondialdehyde (MDA)], pro-inflammatory markers [tumor necrosis factor (TNF-α), and Interleukins-1ß (IL-1ß) and IL-6]. Also, neurotransmitters such as serotonin (5-HT), dopamine (DA), ϒ-amino butyric acid (GABA), acetylcholine (Ach), and noradrenaline (NA) contents were performed. RESULTS: Fustin exhibited substantial behavioral improvement in the Y-maze measures spontaneous alterations percentage (SA%) and decreased latency time following the acquisition and prolonged time spent in the probe trial in the MWM test. Moreover, fustin inhibits enhanced neuroinflammatory cytokines and oxidative stress markers and improves the neurotransmitters. CONCLUSION: The findings of this study suggest that fustin inhibits SCOP impact on cognitive abilities in rats. The present investigation demonstrates that fustin, a potent phytochemical, effectively mitigated the behavioral and physiological changes induced by SCOP in rats. This was primarily achieved by modulating the levels of inflammatory response and neurotransmitters.

6.
PLoS One ; 19(7): e0305358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008492

RESUMO

BACKGROUND: Huntington's disease (HD) is an extremely harmful autosomal inherited neurodegenerative disease. Motor dysfunction, mental disorder, and cognitive deficits are the characteristic features of this disease. The current study examined whether 6-shogaol has a protective effect against 3-Nitropropionic Acid (3-NPA)-induced HD in rats. METHODS: A total of thirty male Wistar rats received 6-shogaol (10 and 20 mg/kg, per oral) an hour before injection of 3-NPA (10 mg/kg i.p.) for 15 days. Behavioral tests were performed, including narrow beam walk, rotarod test, and grip strength test. Biochemical tests promoting oxidative stress were evaluated [superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT) and malondialdehyde (MDA)], including changes to neurotransmitters serotonin (5-HT), dopamine (DA), norepinephrine (NE), homovanillic acid (HVA), (3,4-dihydroxyphenylacetic acid (DOPAC), γ-aminobutyric acid (GABA), and 5-hydroxy indole acetic acid (5-HIAA), nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α), interleukins-1ß (IL-1ß), IL-6, brain-derived neurotrophic factor (BDNF), and nuclear factor erythroid 2-related factor 2 (Nrf2). The 6-shogaol was docked to the active site of TNF-α (2AZ5), NF-κB (1SVC), BDNF) [1B8M], and Nrf2 [5FZN] proteins using AutoDock tools. RESULTS: The 6-shogaol group significantly improved behavioral activity over the 3-NPA-injected control rats. Moreover, 3-NPA-induced significantly altered neurotransmitters, biochemical and neuroinflammatory indices, which could efficiently be reversed by 6-shogaol. The 6-shogaol showed favorable negative binding energies at -9.271 (BDNF) kcal/mol. CONCLUSIONS: The present investigation demonstrated the neuroprotective effects of 6-shogaol in an experimental animal paradigm against 3-NPA-induced HD in rats. The suggested mechanism is supported by immunohistochemical analysis and western blots, although more research is necessary for definite confirmation.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Catecóis , Citocinas , Doença de Huntington , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2 , NF-kappa B , Nitrocompostos , Propionatos , Ratos Wistar , Animais , Doença de Huntington/metabolismo , Doença de Huntington/induzido quimicamente , Doença de Huntington/tratamento farmacológico , Propionatos/farmacologia , Masculino , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ratos , NF-kappa B/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Catecóis/farmacologia , Catecóis/química , Citocinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia
8.
Life (Basel) ; 12(9)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36143405

RESUMO

(1) Background: 2-Methoxyestradiol (2ME) is a metabolite of estrogens and possesses promising anti-proliferative and cytotoxic activities. However, it suffers unfavorable pharmacokinetic characteristics such as absorption after oral administration. The aim of this study was to prepare an optimized 2ME self-nanoemulsifying drug delivery system (2ME-SNEDDS) and evaluate its cytotoxicity and pro-apoptotic activities in MCF-7 breast cancer cells. (2) Methods: For optimization of the 2ME-SNEDDS, a three-component system was used in the D-optimal mixture experimental study. MCF-7 cells were incubated with the 2ME-SNEDDS and subjected to an assessment of growth inhibition, cell cycle progression, annexin V staining, caspase-3 concentration, Bax, Bcl-2, and cyclin D1 mRNA expression, and reactive oxygen species (ROS) generation. (3) Results: The optimized formula had a globule size of 94.97 ± 4.35 nm. Zeta potential was found to be -3.4 ± 1.2 mV with a polydispersity index (PDI) of 0.34. In addition, 96.3 ± 4.3% of 2ME was released from the 2ME-SNEDDS within 24 h using the activated analysis bag technique. Moreover, the prepared 2ME-SNEDDS exhibited a significant enhancement of the anti-proliferative activity against MCF-7 cells in comparison to raw 2ME. This was associated with cyclin D1 expression down-regulation and the accumulation of cells in the G0/G1 and G2/M phases. The pro-apoptotic activities of the 2ME-SNEDDS were confirmed by annexin V staining, which indicated enhanced early and late cell death. This accompanied modulation of the mRNA expression of Bax and Bcl-2 in favor of apoptosis. The 2ME-SNEDDS significantly enhanced cleaved caspase-3 concentration in comparison to raw 2ME. In addition, the 2ME-SNEDDS significantly increased the generation of ROS in MCF-7 cells. (4) Conclusions: The 2ME-SNEDDS exhibits enhanced cytotoxicity and pro-apoptotic activity in MCF-7 cells. This is mediated by, at least partially, ROS generation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA