Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 19(1)2018 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-29300334

RESUMO

Bone is one of the most preferential target site for cancer metastases, particularly for prostate, breast, kidney, lung and thyroid primary tumours. Indeed, numerous chemical signals and growth factors produced by the bone microenvironment constitute factors promoting cancer cell invasion and aggression. After reviewing the different theories proposed to provide mechanism for metastatic progression, we report on the gene expression profile of bone-seeking cancer cells. We also discuss the cross-talk between the bone microenvironment and invading cells, which impacts on the tumour actions on surrounding bone tissue. Lastly, we detail therapies for bone metastases. Due to poor prognosis for patients, the strategies mainly aim at reducing the impact of skeletal-related events on patients' quality of life. However, recent advances have led to a better understanding of molecular mechanisms underlying bone metastases progression, and therefore of novel therapeutic targets.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Progressão da Doença , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Humanos , Modelos Biológicos , Metástase Neoplásica , Microambiente Tumoral
2.
Arch Toxicol ; 91(4): 1903-1914, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27585666

RESUMO

Natural uranium (U), which is present in our environment, exerts a chemical toxicity, particularly in bone where it accumulates. Generally, U is found at oxidation state +VI in its oxocationic form [Formula: see text] in aqueous media. Although U(VI) has been reported to induce cell death in osteoblasts, the cells in charge of bone formation, the molecular mechanism for U(VI) effects in these cells remains poorly understood. The objective of our study was to explore U(VI) effect at doses ranging from 5 to 600 µM, on mineralization and autophagy induction in the UMR-106 model osteoblastic cell line and to determine U(VI) speciation after cellular uptake. Our results indicate that U(VI) affects mineralization function, even at subtoxic concentrations (<100 µM). The combination of thermodynamic modeling of U with EXAFS data in the culture medium and in the cells clearly indicates the biotransformation of U(VI) carbonate species into a meta-autunite phase upon uptake by osteoblasts. We next assessed U(VI) effect at 100 and 300 µM on autophagy, a survival process triggered by various stresses such as metal exposure. We observed that U(VI) was able to rapidly activate autophagy but an inhibition of the autophagic flux was observed after 24 h. Thus, our results indicate that U(VI) perturbs osteoblastic functions by reducing mineralization capacity. Our study identifies for the first time U(VI) in the form of meta-autunite in mammalian cells. In addition, U(VI)-mediated inhibition of the autophagic flux may be one of the underlying mechanisms leading to the decreased mineralization and the toxicity observed in osteoblasts.


Assuntos
Autofagia/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Urânio/toxicidade , Animais , Linhagem Celular , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteossarcoma/metabolismo , Ratos , Termodinâmica , Urânio/administração & dosagem
3.
Autophagy ; 10(11): 1965-77, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25484092

RESUMO

Bone remodeling is a tightly controlled mechanism in which osteoblasts (OB), the cells responsible for bone formation, osteoclasts (OC), the cells specialized for bone resorption, and osteocytes, the multifunctional mechanosensing cells embedded in the bone matrix, are the main actors. Increased oxidative stress in OB, the cells producing and mineralizing bone matrix, has been associated with osteoporosis development but the role of autophagy in OB has not yet been addressed. This is the goal of the present study. We first show that the autophagic process is induced in OB during mineralization. Then, using knockdown of autophagy-essential genes and OB-specific autophagy-deficient mice, we demonstrate that autophagy deficiency reduces mineralization capacity. Moreover, our data suggest that autophagic vacuoles could be used as vehicles in OB to secrete apatite crystals. In addition, autophagy-deficient OB exhibit increased oxidative stress and secretion of the receptor activator of NFKB1 (TNFSF11/RANKL), favoring generation of OC, the cells specialized in bone resorption. In vivo, we observed a 50% reduction in trabecular bone mass in OB-specific autophagy-deficient mice. Taken together, our results show for the first time that autophagy in OB is involved both in the mineralization process and in bone homeostasis. These findings are of importance for mineralized tissues which extend from corals to vertebrates and uncover new therapeutic targets for calcified tissue-related metabolic pathologies.


Assuntos
Autofagia , Osso e Ossos/metabolismo , Osteoblastos/citologia , Animais , Remodelação Óssea , Reabsorção Óssea , Linhagem Celular Tumoral , Feminino , Proteínas de Fluorescência Verde/metabolismo , Homeostase , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Subunidade p50 de NF-kappa B/metabolismo , Osteoclastos/metabolismo , Estresse Oxidativo , Ligante RANK/metabolismo , Ratos , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA