RESUMO
The emergence of avian H7N9 viruses has raised concerns about its pandemic potential and prompted vaccine trials. At present, it is unknown whether there will be sufficient cross-reactive hemagglutinin (HA)-specific CD4 T-cell memory with seasonal influenza to facilitate antibody production to H7 HA. There has also been speculation that H7N9 will have few CD4 T-cell epitopes. In this study, we quantified the potential of seasonal influenza to provide memory CD4 T cells that can cross-reactively recognize H7 HA-derived peptides. These studies have revealed that many humans have substantial H7-reactive CD4 T cells, whereas up to 40% are lacking such reactivity. Correlation studies indicate that CD4 T cells reactive with H7 HA are drawn from reactivity generated from seasonal strains. Overall, our findings suggest that previous exposure of humans to seasonal influenza can poise them to respond to avian H7N9, but this is likely to be uneven across populations.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Reações Cruzadas , Imunidade Heteróloga , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Subtipo H7N9 do Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Adolescente , Adulto , Animais , Humanos , Memória Imunológica , Pessoa de Meia-Idade , Adulto JovemRESUMO
Influenza virus vaccination strategies are focused upon the elicitation of protective antibody responses through administration of viral protein through either inactivated virions or live attenuated virus. Often overlooked in this strategy is the CD4 T cell response: how it develops into memory, and how it may support future primary B cell responses to heterologous infection. Through the utilization of a peptide-priming regimen, this study describes a strategy for developing CD4 T cell memory with the capacity to robustly expand in the lung-draining lymph node after live influenza virus infection. Not only were frequencies of antigen-specific CD4 T cells enhanced, but these cells also supported an accelerated primary B cell response to influenza virus-derived protein, evidenced by high anti-nucleoprotein (NP) serum antibody titers early, while there is still active viral replication ongoing in the lung. NP-specific antibody-secreting cells and heightened frequencies of germinal center B cells and follicular T helper cells were also readily detectable in the draining lymph node. Surprisingly, a boosted memory CD4 T cell response was not sufficient to provide intermolecular help for antibody responses. Our study demonstrates that CD4 T cell help is selective and limiting to the primary antibody response to influenza virus infection and that preemptive priming of CD4 T cell help can promote effective and rapid conversion of naive B cells to mature antibody-secreting cells.
Assuntos
Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Vírus da Influenza A/isolamento & purificação , Infecções por Orthomyxoviridae/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/sangue , Ensaio de Imunoadsorção Enzimática , Epitopos Imunodominantes/química , Epitopos Imunodominantes/imunologia , Memória Imunológica , Camundongos , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/imunologiaRESUMO
Influenza-specific immunity in humans is unique because there are repeated exposures to viral strains containing genetically conserved epitopes recruiting memory CD4 T cells and novel epitopes stimulating naive CD4 T cells, possibly resulting in competition between memory and naive lymphocytes. In this study, we evaluated the effect of this competition on CD4 T cell and B cell response specificity using a murine model of sequential influenza infection. We found striking and selective decreases in CD4 T cell reactivity to nonconserved hemagglutinin (HA) epitopes following secondary influenza infection. Surprisingly, this shift in CD4 T cell specificity was associated with dramatic decreases in HA-specific Ab. These results suggest that repeated exposure to influenza viruses and vaccines containing conserved internal proteins may have unintended and negative consequences on the ability to induce HA-specific Ab to novel pandemic strains of influenza. These finding could have important implications on pandemic influenza preparedness strategies.
Assuntos
Anticorpos Antivirais/imunologia , Especificidade de Anticorpos , Linfócitos T CD4-Positivos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Infecções por Orthomyxoviridae/imunologia , Animais , Linfócitos B/imunologia , Epitopos de Linfócito T/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologiaRESUMO
In recent years, influenza viruses with pandemic potential have been a major concern worldwide. One unresolved issue is how infection or vaccination with seasonal influenza virus strains influences the ability to mount a protective immune response to novel pandemic strains. In this study, we developed a mouse model of primary and secondary influenza infection by using a widely circulating seasonal H1N1 virus and the pandemic strain of H1N1 that emerged in Mexico in 2009, and we evaluated several key issues. First, using overlapping peptide libraries encompassing the entire translated sequences of 5 major influenza virus proteins, we assessed the specificity of CD4 T cell reactivity toward epitopes conserved among H1N1 viruses or unique to the seasonal or pandemic strain by enzyme-linked immunospot (ELISpot) assays. Our data show that CD4 T cells reactive to both virus-specific and genetically conserved epitopes are elicited, allowing separate tracking of these responses. Populations of cross-reactive CD4 T cells generated from seasonal influenza infection were found to expand earlier after secondary infection with the pandemic H1N1 virus than CD4 T cell populations specific for new epitopes. Coincident with this rapid CD4 T cell response was a potentiated neutralizing-antibody response to the pandemic strain and protection from the pathological effects of infection with the pandemic virus. This protection was not dependent on CD8 T cells. Together, our results indicate that exposure to seasonal vaccines and infection elicits CD4 T cells that promote the ability of the mammalian host to mount a protective immune response to pandemic strains of influenza virus.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Células Cultivadas , Proteção Cruzada , Reações Cruzadas , Modelos Animais de Doenças , ELISPOT , Feminino , Camundongos , Camundongos Endogâmicos BALB CRESUMO
An ideal therapeutic for stroke or spinal cord injury should promote survival and regeneration in the CNS. Arginase 1 (Arg1) has been shown to protect motor neurons from trophic factor deprivation and allow sensory neurons to overcome neurite outgrowth inhibition by myelin proteins. To identify small molecules that capture Arg1's protective and regenerative properties, we screened a hippocampal cell line stably expressing the proximal promoter region of the arginase 1 gene fused to a reporter gene against a library of compounds containing clinically approved drugs. This screen identified daidzein as a transcriptional inducer of Arg1. Both CNS and PNS neurons primed in vitro with daidzein overcame neurite outgrowth inhibition from myelin-associated glycoprotein, which was mirrored by acutely dissociated and cultured sensory neurons primed in vivo by intrathecal or subcutaneous daidzein infusion. Further, daidzein was effective in promoting axonal regeneration in vivo in an optic nerve crush model when given intraocularly without lens damage, or most importantly, when given subcutaneously after injury. Mechanistically, daidzein requires transcription and induction of Arg1 activity for its ability to overcome myelin inhibition. In contrast to canonical Arg1 activators, daidzein increases Arg1 without increasing CREB phosphorylation, suggesting its effects are cAMP-independent. Accordingly, it may circumvent known CNS side effects of some cAMP modulators. Indeed, daidzein appears to be safe as it has been widely consumed in soy products, crosses the blood-brain barrier, and is effective without pretreatment, making it an ideal candidate for development as a therapeutic for spinal cord injury or stroke.
Assuntos
Arginase/genética , AMP Cíclico/metabolismo , Isoflavonas/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Regiões Promotoras Genéticas/fisiologia , Análise de Variância , Animais , Animais Recém-Nascidos , Arginase/metabolismo , Células CHO , Células Cultivadas , Cerebelo/citologia , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Proteína GAP-43/metabolismo , Gânglios Espinais/citologia , Ensaios de Triagem em Larga Escala/métodos , Hipocampo/citologia , Masculino , Glicoproteína Associada a Mielina/farmacologia , Regeneração Nervosa/fisiologia , Neurônios/citologia , Doenças do Nervo Óptico/tratamento farmacológico , Doenças do Nervo Óptico/patologia , Estresse Oxidativo/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Estrogênio/metabolismo , Bibliotecas de Moléculas PequenasRESUMO
A hallmark of the immune response to influenza is repeated encounters with proteins containing both genetically conserved and variable components. Therefore, the B and T cell repertoire is continually being remodeled, with competition between memory and naïve lymphocytes. Our previous work using a mouse model of secondary heterosubtypic influenza infection has shown that this competition results in a focusing of CD4 T cell response specificity towards internal virion proteins with a selective decrease in CD4 T cell reactivity to the novel HA epitopes. Strikingly, this shift in CD4 T cell specificity was associated with a diminished anti-HA antibody response. Here, we sought to determine whether the loss in HA-specific reactivity that occurs as a consequence of immunological memory could be reversed by selectively priming HA-specific CD4 T cells prior to secondary infection. Using a peptide-based priming strategy, we found that selective expansion of the anti-HA CD4 T cell memory repertoire enhanced HA-specific antibody production upon heterosubtypic infection. These results suggest that the potentially deleterious consequences of repeated exposure to conserved influenza internal virion proteins could be reversed by vaccination strategies that selectively arm the HA-specific CD4 T cell compartment. This could be a potentially useful pre-pandemic vaccination strategy to promote accelerated neutralizing antibody production on challenge with a pandemic influenza strain that contains few conserved HA epitopes.
Assuntos
Epitopos/imunologia , Hemaglutininas Virais/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Humanos , Memória Imunológica , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/uso terapêutico , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Camundongos , Pandemias , VacinaçãoRESUMO
Recent studies have demonstrated that therapies targeting the innate immune system have the potential to provide transient, non-specific protection from a variety of infectious organisms; however, the potential of enhancing the efficacy of such treatments using nano-scale delivery platforms requires more in depth evaluation. As such, we employed a nanolipoprotein (NLP) platform to enhance the efficacy of innate immune agonists. Here, we demonstrate that the synthetic Toll-like receptor (TLR) agonists monophosphoryl lipid A (MPLA) and CpG oligodeoxynucleotides (CpG) can be readily incorporated into NLPs. Conjugation of MPLA and CpG to NLPs (MPLA:NLP and CpG:NLP, respectively) significantly enhanced their immunostimulatory profiles both in vitro and in vivo compared to administration of agonists alone, as evidenced by significant increases in cytokine production, cell surface expression of activation markers, and upregulation of immunoregulatory genes. Importantly, enhancement of cytokine production by agonist conjugation to NLPs was also observed in primary human dendritic cells. Furthermore, BALB/c mice pretreated with CpG:NLP constructs survived a lethal influenza challenge whereas pretreatment with CpG alone had no effect on survival.
Assuntos
Fatores Imunológicos/imunologia , Influenza Humana/imunologia , Nanopartículas/química , Animais , Linhagem Celular , Citocinas/metabolismo , Células Dendríticas/metabolismo , Humanos , Lipídeo A/análogos & derivados , Lipídeo A/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Oligodesoxirribonucleotídeos/químicaRESUMO
There are a number of related goals of influenza vaccination, including elicitation of protective antibodies and induction of cellular CD4 and CD8+ T cell responses. Because CD4+ T cell expansion and functionality are influenced by peptide specificity and T cell gene expression can be modified by repeated re-stimulations, it is important to evaluate how frequent influenza vaccinations affect CD4+ T cell dependent functions in protective immunity to influenza. Trivalent influenza vaccines (TIV) have production of neutralizing antibodies to HA as their primary goal and main criteria for efficacy. Accordingly, they are not characterized for any other viral components. In the current study, we evaluated whether other influenza virus proteins were present in commercial TIV at levels sufficient for immunogenicity in vivo. Mice that differed with regard to their expressed class II molecules were used in concert with peptide-stimulated cytokine ELISPOT assays to comprehensively evaluate the CD4+ T cell antigen specificity induced by the TIV. Our studies revealed that NA, NP, M1 and NS1 were present in sufficient quantities in the TIV to prime and boost CD4+ T cells. These results suggest that in humans, the broad CD4+ T cell repertoire induced by live infection is continually boosted and maintained throughout life by regular vaccination with licensed intramuscular split vaccines. The implications raised by our findings on CD4+ T cell functionality in influenza are discussed.
Assuntos
Vacinas contra Influenza/imunologia , Vacinas de Produtos Inativados/imunologia , Proteínas Virais/imunologia , Vírion/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Ensaio de Imunoadsorção Enzimática , Camundongos , Camundongos Endogâmicos BALB CRESUMO
The antibody response to influenza infection is largely dependent on CD4 T cell help for B cells. Cognate signals and secreted factors provided by CD4 T cells drive B cell activation and regulate antibody isotype switching for optimal antiviral activity. Recently, we analyzed HLA-DR1 transgenic (DR1) mice and C57BL/10 (B10) mice after infection with influenza virus A/New Caledonia/20/99 (NC) and defined epitopes recognized by virus-specific CD4 T cells. Using this information in the current study, we demonstrate that the pattern of secretion of IL-2, IFN-γ, and IL-4 by CD4 T cells activated by NC infection is largely independent of epitope specificity and the magnitude of the epitope-specific response. Interestingly, however, the characteristics of the virus-specific CD4 T cell and the B cell response to NC infection differed in DR1 and B10 mice. The response in B10 mice featured predominantly IFN-γ-secreting CD4 T cells and strong IgG2b/IgG2c production. In contrast, in DR1 mice most CD4 T cells secreted IL-2 and IgG production was IgG1-biased. Infection of DR1 mice with influenza PR8 generated a response that was comparable to that in B10 mice, with predominantly IFN-γ-secreting CD4 T cells and greater numbers of IgG2c than IgG1 antibody-secreting cells. The response to intramuscular vaccination with inactivated NC was similar in DR1 and B10 mice; the majority of CD4 T cells secreted IL-2 and most IgG antibody-secreting cells produced IgG2b or IgG2c. Our findings identify inherent host influences on characteristics of the virus-specific CD4 T cell and B cell responses that are restricted to the lung environment. Furthermore, we show that these host influences are substantially modulated by the type of infecting virus via the early induction of innate factors. Our findings emphasize the importance of immunization strategy for demonstrating inherent host differences in CD4 T cell and B cell responses.
Assuntos
Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Vacinas contra Influenza/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos TransgênicosRESUMO
The hairpin ribozyme requires functional group contributions from G8 to assist in phosphodiester bond cleavage. Previously, replacement of G8 by a series of nucleobase variants showed little effect on interdomain docking, but a 3-250-fold effect on catalysis. To identify G8 features that contribute to catalysis within the hairpin ribozyme active site, structures for five base variants were determined by X-ray crystallography in a resolution range between 2.3 and 2.7 A. For comparison, a native all-RNA "G8" hairpin ribozyme structure was refined to 2.05 A resolution. The native structure revealed a scissile bond angle (tau) of 158 degrees, which is close to the requisite 180 degrees "in-line" geometry. Mutations G8(inosine), G8(diaminopurine), G8(aminopurine), G8(adenosine), and G8(uridine) folded properly, but exhibited nonideal scissile bond geometries (tau ranging from 118 degrees to 93 degrees) that paralleled their diminished solution activities. A superposition ensemble of all structures, including a previously described hairpin ribozyme-vanadate complex, indicated the scissile bond can adopt a variety of conformations resulting from perturbation of the chemical environment and provided a rationale for how the exocyclic amine of nucleobase 8 promotes productive, in-line geometry. Changes at position 8 also caused variations in the A-1 sugar pucker. In this regard, variants A8 and U8 appeared to represent nonproductive ground states in which their 2'-OH groups mimicked the pro-R, nonbridging oxygen of the vanadate transition-state complex. Finally, the results indicated that ordered water molecules bind near the 2'-hydroxyl of A-1, lending support to the hypothesis that solvent may play an important role in the reaction.
Assuntos
Fósforo/química , Fósforo/metabolismo , RNA Catalítico/química , RNA Catalítico/metabolismo , Água/metabolismo , Sítios de Ligação , Ligação Competitiva , Cinética , Modelos Químicos , Conformação de Ácido Nucleico , RNA Catalítico/genética , Relação Estrutura-AtividadeRESUMO
The hairpin ribozyme is an RNA enzyme that performs site-specific phosphodiester bond cleavage between nucleotides A-1 and G+1 within its cognate substrate. Previous functional studies revealed that the minimal hairpin ribozyme exhibited "gain-of-function" cleavage properties resulting from U39C or U39 to propyl linker (C3) modifications. Furthermore, each "mutant" displayed different magnesium-dependence in its activity. To investigate the molecular basis for these gain-of-function variants, crystal structures of minimal, junctionless hairpin ribozymes were solved in native (U39), and mutant U39C and U39(C3) forms. The results revealed an overall molecular architecture comprising two docked internal loop domains folded into a wishbone shape, whose tertiary interface forms a sequestered active site. All three minimal hairpin ribozymes bound Co(NH(3))(6)(3+) at G21/A40, the E-loop/S-turn boundary. The native structure also showed that U37 of the S-turn adopts both sequestered and exposed conformations that differ by a maximum displacement of 13 A. In the sequestered form, the U37 base packs against G36, and its 2'-hydroxyl group forms a water mediated hydrogen bond to O4' of G+1. These interactions were not observed in previous four-way-junction hairpin ribozyme structures due to crystal contacts with the U1A splicing protein. Interestingly, the U39C and U39(C3) mutations shifted the equilibrium conformation of U37 into the sequestered form through formation of new hydrogen bonds in the S-turn, proximal to the essential nucleotide A38. A comparison of all three new structures has implications for the catalytically relevant conformation of the S-turn and suggests a rationale for the distinctive metal dependence of each mutant.
Assuntos
Metais/química , Conformação de Ácido Nucleico , RNA Catalítico/química , RNA/química , Uracila/química , Cristalização , Modelos Moleculares , Estrutura Molecular , RNA/genética , RNA Catalítico/genética , Difração de Raios XRESUMO
Ornithine cyclodeaminase (OCD) is a member of the micro-crystallin protein family, the biological activity of which is the conversion of L-ornithine to L-proline and ammonia. In order to elucidate the functional groups of this enzyme that are involved in catalysis, the crystallization of OCD from Pseudomonas putida was undertaken. Using microbatch-under-oil screening at the high-throughput crystallization laboratory (HTC) at the Hauptman-Woodward Medical Research Institute Inc. (HWI Buffalo, NY, USA), numerous crystallization conditions were rapidly identified. Several conditions could be reproduced on a larger scale as vapor-diffusion experiments in-house. The best diffraction-quality crystals were obtained from solutions of 40%(v/v) 2-methyl-2,4-pentanediol buffered at pH 6.0 with 0.1 M MES and diffracted X-rays to 1.68 A resolution. Crystals belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 70.0, b = 78.3, c = 119.4 A. The V(M) was 2.1 A(3) Da(-1), corresponding to 42% solvent, which is consistent with two 38.5 kDa molecules per asymmetric unit. The structure determination is under way using experimental phasing methods.
Assuntos
Amônia-Liases/química , Pseudomonas putida/enzimologia , Amônia-Liases/genética , Amônia-Liases/isolamento & purificação , Automação , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
Ornithine cyclodeaminase catalyzes the conversion of L-ornithine to L-proline by an NAD(+)-dependent hydride transfer reaction that culminates in ammonia elimination. Phylogenetic comparisons of amino acid sequences revealed that the enzyme belongs to the mu-crystallin protein family whose three-dimensional fold has not been reported. Here we describe the crystal structure of ornithine cyclodeaminase in complex with NADH, refined to 1.80 A resolution. The enzyme consists of a homodimeric fold whose subunits comprise two functional regions: (i) a novel substrate-binding domain whose antiparallel beta-strands form a 14-stranded barrel at the oligomeric interface and (ii) a canonical Rossmann fold that interacts with a single dinucleotide positioned for re hydride transfer. The adenosyl moiety of the cofactor resides in a solvent-exposed crevice on the protein surface and makes contact with a "domain-swapped"-like coil-helix module originating from the dyad-related molecule. Diffraction data were also collected to 1.60 A resolution on crystals grown in the presence of l-ornithine. The structure revealed that the substrate carboxyl group interacts with the side chains of Arg45, Lys69, and Arg112. In addition, the ammonia leaving group hydrogen bonds to the side chain of Asp228 and the site of hydride transfer is 3.8 A from C4 of the nicotinamide. The absence of an appropriately positioned water suggested that a previously proposed mechanism that calls for hydrolytic elimination of the imino intermediate must be reconsidered. A more parsimonious description of the chemical mechanism is proposed and discussed in relation to the structure and function of mu-crystallins.