Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(13): e2218949120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36940333

RESUMO

Psychedelics have attracted medical interest, but their effects on human brain function are incompletely understood. In a comprehensive, within-subjects, placebo-controlled design, we acquired multimodal neuroimaging [i.e., EEG-fMRI (electroencephalography-functional MRI)] data to assess the effects of intravenous (IV) N,N-Dimethyltryptamine (DMT) on brain function in 20 healthy volunteers. Simultaneous EEG-fMRI was acquired prior to, during, and after a bolus IV administration of 20 mg DMT, and, separately, placebo. At dosages consistent with the present study, DMT, a serotonin 2A receptor (5-HT2AR) agonist, induces a deeply immersive and radically altered state of consciousness. DMT is thus a useful research tool for probing the neural correlates of conscious experience. Here, fMRI results revealed robust increases in global functional connectivity (GFC), network disintegration and desegregation, and a compression of the principal cortical gradient under DMT. GFC × subjective intensity maps correlated with independent positron emission tomography (PET)-derived 5-HT2AR maps, and both overlapped with meta-analytical data implying human-specific psychological functions. Changes in major EEG-measured neurophysiological properties correlated with specific changes in various fMRI metrics, enriching our understanding of the neural basis of DMT's effects. The present findings advance on previous work by confirming a predominant action of DMT-and likely other 5-HT2AR agonist psychedelics-on the brain's transmodal association pole, i.e., the neurodevelopmentally and evolutionarily recent cortex that is associated with species-specific psychological advancements, and high expression of 5-HT2A receptors.


Assuntos
Alucinógenos , N,N-Dimetiltriptamina , Humanos , N,N-Dimetiltriptamina/farmacologia , Alucinógenos/farmacologia , Imageamento por Ressonância Magnética , Encéfalo , Eletroencefalografia
2.
J Neurosci ; 44(27)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38811165

RESUMO

The intricate relationship between prestimulus alpha oscillations and visual contrast detection variability has been the focus of numerous studies. However, the causal impact of prestimulus alpha traveling waves on visual contrast detection remains largely unexplored. In our research, we sought to discern the causal link between prestimulus alpha traveling waves and visual contrast detection across different levels of mental fatigue. Using electroencephalography alongside a visual detection task with 30 healthy adults (13 females; 17 males), we identified a robust negative correlation between prestimulus alpha forward traveling waves (FTWs) and visual contrast threshold (VCT). Inspired by this correlation, we utilized 45/-45° phase-shifted transcranial alternating current stimulation (tACS) in a sham-controlled, double-blind, within-subject experiment with 33 healthy adults (23 females; 10 males) to directly modulate these alpha traveling waves. After the application of 45° phase-shifted tACS, we observed a substantial decrease in FTW and an increase in backward traveling waves, along with a concurrent increase in VCT, compared with the sham condition. These changes were particularly pronounced under a low fatigue state. The findings of state-dependent tACS effects reveal the potential causal role of prestimulus alpha traveling waves in visual contrast detection. Moreover, our study highlights the potential of 45/-45° phase-shifted tACS in cognitive modulation and therapeutic applications.


Assuntos
Ritmo alfa , Sensibilidades de Contraste , Estimulação Transcraniana por Corrente Contínua , Humanos , Feminino , Masculino , Adulto , Ritmo alfa/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Sensibilidades de Contraste/fisiologia , Adulto Jovem , Método Duplo-Cego , Eletroencefalografia/métodos , Estimulação Luminosa/métodos , Percepção Visual/fisiologia , Fadiga Mental/fisiopatologia
3.
J Cogn Neurosci ; 36(4): 721-729, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172133

RESUMO

Brain oscillations are involved in many cognitive processes, and several studies have investigated their role in cognition. In particular, the phase of certain oscillations has been related to temporal binding and integration processes, with some authors arguing that perception could be an inherently rhythmic process. However, previous research on oscillations mostly overlooked their spatial component: how oscillations propagate through the brain as traveling waves, with systematic phase delays between brain regions. Here, we argue that interpreting oscillations as traveling waves is a useful paradigm shift to understand their role in temporal binding and address controversial results. After a brief definition of traveling waves, we propose an original view on temporal integration that considers this new perspective. We first focus on cortical dynamics, then speculate about the role of thalamic nuclei in modulating the waves, and on the possible consequences for rhythmic temporal binding. In conclusion, we highlight the importance of considering oscillations as traveling waves when investigating their role in cognitive functions.


Assuntos
Ondas Encefálicas , Encéfalo , Humanos , Cognição
4.
Psychophysiology ; 61(4): e14487, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38015102

RESUMO

While physical performance has long been thought to be limited only by physiological factors, many experiments denote that psychological ones can also influence it. Specifically, the deception paradigm investigates the effect of psychological factors on performance by manipulating a psychological variable unbeknownst to the subjects. For example, during a physical exercise performed to failure, previous results revealed an improvement in performance (i.e., holding time) when the clock shown to the subjects was deceptively slowed down. However, the underlying neurophysiological changes supporting this performance improvement due to deceptive time manipulation remain unknown. Here, we addressed this issue by investigating from a neuromuscular perspective the effect of a deceptive clock manipulation on a single-joint isometric task conducted to failure in 24 healthy participants (11 females). Neuromuscular fatigue was assessed by pre- to post-exercise changes in quadriceps maximal voluntary torque (Tmax ), voluntary activation level (VAL), and potentiated twitch (TTW ). Our main results indicated a significant performance improvement when the clock was slowed down (Biased: 356 ± 118 s vs. Normal: 332 ± 112 s, p = .036) but, surprisingly, without any difference in the associated neuromuscular fatigue (p > .05 and BF < 0.3 for Tmax , VAL, and TTW between both sessions). Computational modeling showed that, when observed, the holding time improvement was explained by a neuromuscular fatigue accumulation based on subjective rather than actual time. These results support a psychological influence on neuromuscular processes and contribute significantly to the literature on the mind-body influence, by challenging our understanding of fatigue.


Assuntos
Contração Isométrica , Fadiga Muscular , Feminino , Humanos , Fadiga Muscular/fisiologia , Contração Isométrica/fisiologia , Músculo Quadríceps/fisiologia , Exercício Físico/fisiologia , Desempenho Físico Funcional , Eletromiografia , Músculo Esquelético/fisiologia
5.
Neural Comput ; 34(5): 1075-1099, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35231926

RESUMO

Visual understanding requires comprehending complex visual relations between objects within a scene. Here, we seek to characterize the computational demands for abstract visual reasoning. We do this by systematically assessing the ability of modern deep convolutional neural networks (CNNs) to learn to solve the synthetic visual reasoning test (SVRT) challenge, a collection of 23 visual reasoning problems. Our analysis reveals a novel taxonomy of visual reasoning tasks, which can be primarily explained by both the type of relations (same-different versus spatial-relation judgments) and the number of relations used to compose the underlying rules. Prior cognitive neuroscience work suggests that attention plays a key role in humans' visual reasoning ability. To test this hypothesis, we extended the CNNs with spatial and feature-based attention mechanisms. In a second series of experiments, we evaluated the ability of these attention networks to learn to solve the SVRT challenge and found the resulting architectures to be much more efficient at solving the hardest of these visual reasoning tasks. Most important, the corresponding improvements on individual tasks partially explained our novel taxonomy. Overall, this work provides a granular computational account of visual reasoning and yields testable neuroscience predictions regarding the differential need for feature-based versus spatial attention depending on the type of visual reasoning problem.


Assuntos
Redes Neurais de Computação , Resolução de Problemas , Humanos , Aprendizagem
6.
PLoS Biol ; 17(10): e3000487, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31581198

RESUMO

Predictive coding is a key mechanism to understand the computational processes underlying brain functioning: in a hierarchical network, higher levels predict the activity of lower levels, and the unexplained residuals (i.e., prediction errors) are passed back to higher layers. Because of its recursive nature, we wondered whether predictive coding could be related to brain oscillatory dynamics. First, we show that a simple 2-level predictive coding model of visual cortex, with physiological communication delays between levels, naturally gives rise to alpha-band rhythms, similar to experimental observations. Then, we demonstrate that a multilevel version of the same model can explain the occurrence of oscillatory traveling waves across levels, both forward (during visual stimulation) and backward (during rest). Remarkably, the predictions of our model are matched by the analysis of 2 independent electroencephalography (EEG) datasets, in which we observed oscillatory traveling waves in both directions.


Assuntos
Ritmo alfa/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Córtex Visual/fisiologia , Adulto , Conjuntos de Dados como Assunto , Eletroencefalografia , Feminino , Humanos , Masculino , Estimulação Luminosa , Descanso/fisiologia
7.
J Neurosci ; 39(27): 5369-5376, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31061089

RESUMO

Pupil size under constant illumination reflects brain arousal state, and dilates in response to novel information, or surprisal. Whether this response can be observed regardless of conscious perception is still unknown. In the present study, male and female adult humans performed an implicit learning task across a series of three experiments. We measured pupil and brain-evoked potentials to stimuli that violated transition statistics but were not relevant to the task. We found that pupil size dilated following these surprising events, in the absence of awareness of transition statistics, and only when attention was allocated to the stimulus. These pupil responses correlated with central potentials, evoking an anterior cingulate origin. Arousal response to surprisal outside the scope of conscious perception points to the fundamental relationship between arousal and information processing and indicates that pupil size can be used to track the progression of implicit learning.SIGNIFICANCE STATEMENT Pupil size dilates following increase in mental effort, surprise, or more generally global arousal. However, whether this response arises as a conscious response or reflects a more fundamental mechanism outside the scrutiny of awareness is still unknown. Here, we demonstrate that unexpected changes in the environment, even when processed unconsciously and without being relevant to the task, lead to an increase in arousal levels as reflected by the pupillary response. Further, we show that the concurrent electrophysiological response shares similarities with mismatch negativity, suggesting the involvement of anterior cingulate cortex. All in all, our results establish novel insights about the mechanisms driving global arousal levels, and it provides new possibilities for reliably measuring unconscious processes.


Assuntos
Nível de Alerta , Encéfalo/fisiologia , Pupila/fisiologia , Inconsciente Psicológico , Percepção Visual/fisiologia , Adulto , Atenção/fisiologia , Conscientização , Eletroencefalografia , Potenciais Evocados , Feminino , Giro do Cíngulo/fisiologia , Humanos , Masculino , Estimulação Luminosa , Adulto Jovem
8.
Neuroimage ; 186: 424-436, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30458303

RESUMO

Motor decisions entails a buildup of choice-selective activity in the motor cortex. The rate of this buildup crucially depends on the amount of evidence favoring the selection of each action choice in the visual environment. Though numerous studies have characterized how sensory evidence drives motor activity when processed consciously, very little is known about the neural mechanisms that underlie the integration of implicit sources of information. Here, we used electroencephalography to investigate the impact of implicit visual cues on response-locked potentials and oscillatory activity in the motor cortex during decision-making. Subjects were required to select between left and right index finger responses according to the motion direction of a cloud of dots presented in one of three possible colors. Unbeknown to the participants, the color cue could bring evidence either in favor of or against the selection of the correct response. Implicit color cues tuned choice-selective oscillatory activity in the low beta range (16-25 Hz), boosting the buildup of contralateral activity when evidence favored the selection of the correct action, while weakening it when evidence biased against the correct response. This modulation of oscillatory activity influenced the speed at which the correct action was eventually chosen. Implicit cues also altered oscillatory activity in a non-selective way in the low frequency oscillation (1-7 Hz) and high beta ranges (25-35 Hz), impacting both contralateral and ipsilateral activity. The current findings yield a critical extension of prior observations by indicating that the integration of both explicit and implicit sources of evidence tunes oscillatory motor activity during decision-making.


Assuntos
Sinais (Psicologia) , Tomada de Decisões/fisiologia , Córtex Motor/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Desempenho Psicomotor , Adulto , Ondas Encefálicas , Eletroencefalografia , Potenciais Evocados , Feminino , Humanos , Masculino , Atividade Motora , Estimulação Luminosa , Adulto Jovem
9.
Conscious Cogn ; 57: 106-115, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29207312

RESUMO

The present study investigated the influence of nociceptive stimuli on visual stimuli processing according to the relative spatial congruence between the two stimuli of different sensory modalities. Participants performed temporal order judgments on pairs of visual stimuli, one presented near the hand on which nociceptive stimuli were occasionally applied, the other one either to its left or to its right. The visual hemifield in which the stimulated hand and the near visual stimulus appeared was manipulated by changing gaze direction. The stimulated hemibody and the stimulated visual hemifield were therefore either congruent or incongruent, in terms of anatomical locations. Despite the changes in anatomical congruence, judgments were always biased in favor of the visual stimuli presented near the stimulated hand. This indicates that nociceptive-visual interaction may rely on a realignment of the respective initial anatomical representations of the somatic and retinotopic spaces toward an integrated, multimodal representation of external space.


Assuntos
Fixação Ocular/fisiologia , Nociceptividade/fisiologia , Percepção Espacial/fisiologia , Campos Visuais/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Espaço Pessoal , Adulto Jovem
10.
Neuroimage ; 163: 34-40, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28899743

RESUMO

Neuroimaging studies have repeatedly emphasized the role of the supplementary motor area (SMA) in motor sequence learning, but interferential approaches have led to inconsistent findings. Here, we aimed to test the role of the SMA in motor skill learning by combining interferential and neuroimaging techniques. Sixteen subjects were trained on simple finger movement sequences for 4 days. Afterwards, they underwent two neuroimaging sessions, in which they executed both trained and novel sequences. Prior to entering the scanner, the subjects received inhibitory transcranial magnetic stimulation (TMS) over the SMA or a control site. Using multivariate fMRI analysis, we confirmed that motor training enhances the neural representation of motor sequences in the SMA, in accordance with previous findings. However, although SMA inhibition altered sequence representation (i.e. between-sequence decoding accuracy) in this area, behavioural performance remained unimpaired. Our findings question the causal link between the neuroimaging correlate of elementary motor sequence representation in the SMA and sequence generation, calling for a more thorough investigation of the role of this region in performance of learned motor sequences.


Assuntos
Aprendizagem/fisiologia , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Magnética Transcraniana , Adulto Jovem
11.
Neuroimage ; 146: 1115-1127, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27742597

RESUMO

In the present study, we investigated the functional contribution of the human primary motor cortex (M1) to motor decisions. Continuous theta burst stimulation (cTBS) was used to alter M1 activity while participants performed a decision-making task in which the reward associated with the subjects' responses (right hand finger movements) depended on explicit and implicit value-based rules. Subjects performed the task over two consecutive days and cTBS occurred in the middle of Day 2, once the subjects were just about to implement implicit rules, in addition to the explicit instructions, to choose their responses, as evident in the control group (cTBS over the right somatosensory cortex). Interestingly, cTBS over the left M1 prevented subjects from implementing the implicit value-based rule while its implementation was enhanced in the group receiving cTBS over the right M1. Hence, cTBS had opposite effects depending on whether it was applied on the contralateral or ipsilateral M1. The use of the explicit value-based rule was unaffected by cTBS in the three groups of subject. Overall, the present study provides evidence for a functional contribution of M1 to the implementation of freshly acquired implicit rules, possibly through its involvement in a cortico-subcortical network controlling value-based motor decisions.


Assuntos
Tomada de Decisões/fisiologia , Córtex Motor/fisiologia , Desempenho Psicomotor , Recompensa , Adulto , Estimulação Elétrica , Eletromiografia , Potencial Evocado Motor , Feminino , Dedos , Humanos , Masculino , Atividade Motora , Tempo de Reação , Estimulação Magnética Transcraniana , Adulto Jovem
13.
Exp Brain Res ; 235(7): 2069-2079, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28374087

RESUMO

Despite their high relevance for defending the integrity of the body, crossmodal links between nociception, the neural system specifically coding potentially painful information, and vision are still poorly studied, especially the effects of nociception on visual perception. This study investigated if, and in which time window, a nociceptive stimulus can attract attention to its location on the body, independently of voluntary control, to facilitate the processing of visual stimuli occurring in the same side of space as the limb on which the visual stimulus was applied. In a temporal order judgment task based on an adaptive procedure, participants judged which of two visual stimuli, one presented next to either hand in either side of space, had been perceived first. Each pair of visual stimuli was preceded (by 200, 400, or 600 ms) by a nociceptive stimulus applied either unilaterally on one single hand, or bilaterally, on both hands simultaneously. Results show that, as compared to the bilateral condition, participants' judgments were biased to the advantage of the visual stimuli that occurred in the same side of space as the hand on which a unilateral, nociceptive stimulus was applied. This effect was present in a time window ranging from 200 to 600 ms, but importantly, biases increased with decreasing time interval. These results suggest that nociceptive stimuli can affect the perceptual processing of spatially congruent visual inputs.


Assuntos
Atenção/fisiologia , Julgamento/fisiologia , Nociceptividade/fisiologia , Orientação Espacial/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Análise de Variância , Feminino , Lateralidade Funcional , Mãos/inervação , Humanos , Masculino , Estimulação Luminosa , Estimulação Física , Psicofísica , Tempo de Reação/fisiologia , Adulto Jovem
14.
Learn Mem ; 23(3): 108-12, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26884228

RESUMO

Chunking, namely the grouping of sequence elements in clusters, is ubiquitous during sequence processing, but its impact on performance remains debated. Here, we found that participants who adopted a consistent chunking strategy during symbolic sequence learning showed a greater improvement of their performance and a larger decrease in cognitive workload over time. Stronger reliance on chunking was also associated with higher scores in a WM updating task, suggesting the contribution of WM gating mechanisms to sequence chunking. Altogether, these results indicate that chunking is a cost-saving strategy that enhances effectiveness of symbolic sequence learning.


Assuntos
Aprendizagem , Memória de Curto Prazo , Adulto , Feminino , Humanos , Masculino , Desempenho Psicomotor , Pupila , Tempo de Reação , Adulto Jovem
15.
J Cogn Neurosci ; 28(3): 402-17, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26765778

RESUMO

Because Broca's area is known to be involved in many cognitive functions, including language, music, and action processing, several attempts have been made to propose a unifying theory of its role that emphasizes a possible contribution to syntactic processing. Recently, we have postulated that Broca's area might be involved in higher-order chunk processing during implicit learning of a motor sequence. Chunking is an information-processing mechanism that consists of grouping consecutive items in a sequence and is likely to be involved in all of the aforementioned cognitive processes. Demonstrating a contribution of Broca's area to chunking during the learning of a nonmotor sequence that does not involve language could shed new light on its function. To address this issue, we used offline MRI-guided TMS in healthy volunteers to disrupt the activity of either the posterior part of Broca's area (left Brodmann's area [BA] 44) or a control site just before participants learned a perceptual sequence structured in distinct hierarchical levels. We found that disruption of the left BA 44 increased the processing time of stimuli representing the boundaries of higher-order chunks and modified the chunking strategy. The current results highlight the possible role of the left BA 44 in building up effector-independent representations of higher-order events in structured sequences. This might clarify the contribution of Broca's area in processing hierarchical structures, a key mechanism in many cognitive functions, such as language and composite actions.


Assuntos
Área de Broca/fisiologia , Aprendizagem/fisiologia , Desempenho Psicomotor/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
16.
Neural Netw ; 157: 280-287, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36375346

RESUMO

Brain-inspired machine learning is gaining increasing consideration, particularly in computer vision. Several studies investigated the inclusion of top-down feedback connections in convolutional networks; however, it remains unclear how and when these connections are functionally helpful. Here we address this question in the context of object recognition under noisy conditions. We consider deep convolutional networks (CNNs) as models of feed-forward visual processing and implement Predictive Coding (PC) dynamics through feedback connections (predictive feedback) trained for reconstruction or classification of clean images. First, we show that the accuracy of the network implementing PC dynamics is significantly larger compared to its equivalent forward network. Importantly, to directly assess the computational role of predictive feedback in various experimental situations, we optimize and interpret the hyper-parameters controlling the network's recurrent dynamics. That is, we let the optimization process determine whether top-down connections and predictive coding dynamics are functionally beneficial. Across different model depths and architectures (3-layer CNN, ResNet18, and EfficientNetB0) and against various types of noise (CIFAR100-C), we find that the network increasingly relies on top-down predictions as the noise level increases; in deeper networks, this effect is most prominent at lower layers. All in all, our results provide novel insights relevant to Neuroscience by confirming the computational role of feedback connections in sensory systems, and to Machine Learning by revealing how these can improve the robustness of current vision models.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Retroalimentação , Visão Ocular , Percepção Visual , Processamento de Imagem Assistida por Computador/métodos
17.
Elife ; 122023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36876909

RESUMO

Previous research has associated alpha-band [8-12 Hz] oscillations with inhibitory functions: for instance, several studies showed that visual attention increases alpha-band power in the hemisphere ipsilateral to the attended location. However, other studies demonstrated that alpha oscillations positively correlate with visual perception, hinting at different processes underlying their dynamics. Here, using an approach based on traveling waves, we demonstrate that there are two functionally distinct alpha-band oscillations propagating in different directions. We analyzed EEG recordings from three datasets of human participants performing a covert visual attention task (one new dataset with N = 16, two previously published datasets with N = 16 and N = 31). Participants were instructed to detect a brief target by covertly attending to the screen's left or right side. Our analysis reveals two distinct processes: allocating attention to one hemifield increases top-down alpha-band waves propagating from frontal to occipital regions ipsilateral to the attended location, both with and without visual stimulation. These top-down oscillatory waves correlate positively with alpha-band power in frontal and occipital regions. Yet, different alpha-band waves propagate from occipital to frontal regions and contralateral to the attended location. Crucially, these forward waves were present only during visual stimulation, suggesting a separate mechanism related to visual processing. Together, these results reveal two distinct processes reflected by different propagation directions, demonstrating the importance of considering oscillations as traveling waves when characterizing their functional role.


Assuntos
Ritmo alfa , Percepção Espacial , Humanos , Ritmo alfa/fisiologia , Percepção Espacial/fisiologia , Lateralidade Funcional/fisiologia , Percepção Visual/fisiologia , Lobo Occipital/fisiologia , Estimulação Luminosa , Eletroencefalografia
20.
Neurosci Conscious ; 2021(1): niab007, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815830

RESUMO

Alpha rhythms (∼10Hz) in the human brain are classically associated with idling activities, being predominantly observed during quiet restfulness with closed eyes. However, recent studies demonstrated that alpha (∼10Hz) rhythms can directly relate to visual stimulation, resulting in oscillations, which can last for as long as one second. This alpha reverberation, dubbed perceptual echoes (PE), suggests that the visual system actively samples and processes visual information within the alpha-band frequency. Although PE have been linked to various visual functions, their underlying mechanisms and functional role are not completely understood. In this study, we investigated the relationship between conscious perception and the generation and the amplitude of PE. Specifically, we displayed two coloured Gabor patches with different orientations on opposite sides of the screen, and using a set of dichoptic mirrors, we induced a binocular rivalry between the two stimuli. We asked participants to continuously report which one of two Gabor patches they consciously perceived, while recording their EEG signals. Importantly, the luminance of each patch fluctuated randomly over time, generating random sequences from which we estimated two impulse-response functions (IRFs) reflecting the PE generated by the perceived (dominant) and non-perceived (suppressed) stimulus, respectively. We found that the alpha power of the PE generated by the consciously perceived stimulus was comparable with that of the PE generated during monocular vision (control condition) and higher than the PE induced by the suppressed stimulus. Moreover, confirming previous findings, we found that all PEs propagated as a travelling wave from posterior to frontal brain regions, irrespective of conscious perception. All in all our results demonstrate a correlation between conscious perception and PE, suggesting that the synchronization of neural activity plays an important role in visual sampling and conscious perception.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA