Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Biochim Biophys Acta ; 1858(5): 1004-11, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26603779

RESUMO

Antimicrobial peptides are a potent class of antibiotics. In the Gram-positive model organism Bacillus subtilis the synthetic peptide RWRWRW-NH2 integrates into the bacterial membrane and delocalizes essential peripheral membrane proteins involved in cell wall biosynthesis and respiration. A lysine residue has been added to the hexapeptide core structure, either C or N-terminally. Lipidation of the lysine residues by a C8-acyl chain significantly improved antibacterial activity against both Gram-positive and Gram-negative bacteria. Here, we report a comparative proteomic study in B. subtilis on the mechanism of action of the lipidated and non-lipidated peptides. All derivatives depolarized the bacterial membrane without forming pores and all affected cell wall integrity. Proteomic profiling of the bacterial stress responses to the small RW-rich antimicrobial peptides was reflective of non-disruptive membrane integration. Overall, our results indicate that antimicrobial peptides can be derivatized with lipid chains enhancing antibacterial activity without significantly altering the mechanism of action. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Sequência de Aminoácidos , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Arginina/química , Arginina/metabolismo , Bacillus subtilis/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Relação Estrutura-Atividade , Triptofano/química , Triptofano/metabolismo
2.
Proc Natl Acad Sci U S A ; 111(14): E1409-18, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24706874

RESUMO

Short antimicrobial peptides rich in arginine (R) and tryptophan (W) interact with membranes. To learn how this interaction leads to bacterial death, we characterized the effects of the minimal pharmacophore RWRWRW-NH2. A ruthenium-substituted derivative of this peptide localized to the membrane in vivo, and the peptide also integrated readily into mixed phospholipid bilayers that resemble Gram-positive membranes. Proteome and Western blot analyses showed that integration of the peptide caused delocalization of peripheral membrane proteins essential for respiration and cell-wall biosynthesis, limiting cellular energy and undermining cell-wall integrity. This delocalization phenomenon also was observed with the cyclic peptide gramicidin S, indicating the generality of the mechanism. Exogenous glutamate increases tolerance to the peptide, indicating that osmotic destabilization also contributes to antibacterial efficacy. Bacillus subtilis responds to peptide stress by releasing osmoprotective amino acids, in part via mechanosensitive channels. This response is triggered by membrane-targeting bacteriolytic peptides of different structural classes as well as by hypoosmotic conditions.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Membrana/metabolismo , Bacillus subtilis/metabolismo , Sítios de Ligação , Citocromos c/metabolismo , Homeostase , Bicamadas Lipídicas , Fosfolipídeos/metabolismo
3.
J Am Chem Soc ; 138(1): 164-72, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26652164

RESUMO

A novel concept to improve the catalytic functions of nucleic acids (DNAzymes) is introduced. The method involves the conjugation of a DNA recognition sequence (aptamer) to the catalytic DNAzyme, yielding a hybrid structure termed "nucleoapzyme". Concentrating the substrate within the "nucleoapzyme" leads to enhanced catalytic activity, displaying saturation kinetics. Different conjugation modes of the aptamer/DNAzyme units and the availability of different aptamer sequences for a substrate provide diverse means to design improved catalysts. This is exemplified with (i) The H2O2-mediated oxidation of dopamine to aminochrome using a series of hemin/G-quadruplex-dopamine aptamer nucleoapzymes. All nucleoapzymes reveal enhanced catalytic activities as compared to the separated DNAzyme/aptamer units, and the most active nucleoapzyme reveals a 20-fold enhanced activity. Molecular dynamics simulations provide rational assessment of the activity of the various nucleoapzymes. The hemin/G-quadruplex-aptamer nucleoapzyme also stimulates the chiroselective oxidation of L- vs D-DOPA by H2O2. (ii) The H2O2-mediated oxidation of N-hydroxy-L-arginine to L-citrulline by a series of hemin/G-quadruplex-arginine aptamer conjugated nucleoapzymes.


Assuntos
Aptâmeros de Nucleotídeos/química , DNA Catalítico/química , Quadruplex G , Hemina/química , Sítios de Ligação , Catálise
4.
J Comput Aided Mol Des ; 29(7): 643-54, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25877490

RESUMO

The binding properties of sequence-specific nucleic acids (aptamers) to low-molecular-weight ligands, macromolecules and even cells attract substantial scientific interest. These ligand-DNA complexes found different applications for sensing, nanomedicine, and DNA nanotechnology. Structural information on the aptamer-ligand complexes is, however, scarce, even though it would open-up the possibilities to design novel features in the complexes. In the present study we apply molecular docking simulations to probe the features of an experimentally documented L-argininamide aptamer complex. The docking simulations were performed using AutoDock 4.0 and YASARA Structure software, a well-suited program for following intermolecular interactions and structures of biomolecules, including DNA. We explored the binding features of a DNA aptamer to L-argininamide and to a series of arginine derivatives or arginine-like ligands. We find that the best docking results are obtained after an energy-minimization of the parent ligand-aptamer complexes. The calculated binding energies of all mono-substituted guanidine-containing ligands show a good correlation with the experimentally determined binding constants. The results provide valuable guidelines for the application of docking simulations for the prediction of aptamer-ligand structures, and for the design of novel features of ligand-aptamer complexes.


Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Arginina/análogos & derivados , Arginina/química , Arginina/metabolismo , Simulação por Computador , Ligantes , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Software
5.
Angew Chem Int Ed Engl ; 54(40): 11652-6, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-25959900

RESUMO

DNAzyme-capped mesoporous SiO2 nanoparticles (MP SiO2 NPs) are applied as stimuli-responsive containers for programmed synthesis. Three types of MP SiO2 NPs are prepared by loading the NPs with Cy3-DBCO (DBCO=dibenzocyclooctyl), Cy5-N3 , and Cy7-N3 , and capping the NP containers with the Mg(2+) , Zn(2+) , and histidine-dependent DNAzyme sequences, respectively. In the presence of Mg(2+) and Zn(2+) ions as triggers, the respective DNAzyme-capped NPs are unlocked, leading to the "click" reaction product Cy3-Cy5. In turn, in the presence of Mg(2+) ions and histidine as triggers the second set of DNAzyme-capped NPs is unlocked leading to the Cy3-Cy7 conjugated product. The unloading of the respective NPs and the time-dependent formation of the products are followed by fluorescence spectroscopy (FRET). A detailed kinetic model for the formation of the different products is formulated and it correlates nicely with the experimental results.


Assuntos
DNA Catalítico/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Dióxido de Silício/química , Dióxido de Silício/metabolismo , Cinética , Tamanho da Partícula , Porosidade , Espectrometria de Fluorescência , Propriedades de Superfície
6.
Angew Chem Int Ed Engl ; 53(27): 7058-62, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24838592

RESUMO

A mixed-linker solid-solution approach was employed to modify the metal sites and introduce structural defects into the mixed-valence Ru(II/III) structural analogue of the well-known MOF family [M3(II,II)(btc)2] (M=Cu, Mo, Cr, Ni, Zn; btc=benzene-1,3,5-tricarboxylate), with partly missing carboxylate ligators at the Ru2 paddle-wheels. Incorporation of pyridine-3,5-dicarboxylate (pydc), which is the same size as btc but carries lower charge, as a second, defective linker has led to the mixed-linker isoreticular derivatives of Ru-MOF, which display characteristics unlike those of the defect-free framework. Along with the creation of additional coordinatively unsaturated sites, the incorporation of pydc induces the partial reduction of ruthenium. Accordingly, the modified Ru sites are responsible for the activity of the "defective" variants in the dissociative chemisorption of CO2, the enhanced performance in CO sorption, the formation of hydride species, and the catalytic hydrogenation of olefins.


Assuntos
Compostos Orgânicos/química , Rutênio/química , Dióxido de Carbono/química , Monóxido de Carbono/química , Catálise , Complexos de Coordenação/química , Hidrogenação , Oxirredução
7.
J Am Chem Soc ; 134(25): 10321-4, 2012 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-22671299

RESUMO

The bioconjugation of organometallic complexes with peptides has proven to be a novel approach for drug discovery. We report the facile and chemoselective reaction of tyrosine-containing G-protein-coupled receptor (GPCR) peptides with [Cp*Rh(H(2)O)(3)](OTf)(2), in water, at room temperature, and at pH 5-6. We have focused on three important GPCR peptides; namely, [Tyr(1)]-leu-enkephalin, [Tyr(4)]-neurotensin(8-13), and [Tyr(3)]-octreotide, each of which has a different position for the tyrosine residue, together with competing functionalities. Importantly, all other functional groups present, i.e., amino, carboxyl, disulfide, phenyl, and indole, were not prominent sites of reactivity by the Cp*Rh tris aqua complex. Furthermore, the influence of the Cp*Rh moiety on the structure of [Tyr(3)]-octreotide was characterized by 2D NMR, resulting in the first representative structure of an organometallic-peptide complex. The biological consequences of these Cp*Rh-peptide complexes, with respect to GPCR binding and growth inhibition of MCF7 and HT29 cancer cells, will be presented for [(η(6)-Cp*Rh-Tyr(1))-leu-enkephalin](OTf)(2) and [(η(6)-Cp*Rh-Tyr(3))-octreotide](OTf)(2).


Assuntos
Modelos Moleculares , Compostos Organometálicos/química , Peptídeos/química , Receptores Acoplados a Proteínas G/química , Ródio/química , Tirosina/química , Ligação Competitiva , Neoplasias da Mama/tratamento farmacológico , Feminino , Células HT29 , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Compostos Organometálicos/farmacologia , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/metabolismo
8.
Antimicrob Agents Chemother ; 56(11): 5749-57, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22926563

RESUMO

Mersacidin, gallidermin, and nisin are lantibiotics, antimicrobial peptides containing lanthionine. They show potent antibacterial activity. All three interfere with cell wall biosynthesis by binding lipid II, but they display different levels of interaction with the cytoplasmic membrane. On one end of the spectrum, mersacidin interferes with cell wall biosynthesis by binding lipid II without integrating into bacterial membranes. On the other end of the spectrum, nisin readily integrates into membranes, where it forms large pores. It destroys the membrane potential and causes leakage of nutrients and ions. Gallidermin, in an intermediate position, also readily integrates into membranes. However, pore formation occurs only in some bacteria and depends on membrane composition. In this study, we investigated the impact of nisin, gallidermin, and mersacidin on cell wall integrity, membrane pore formation, and membrane depolarization in Bacillus subtilis. The impact of the lantibiotics on the cell envelope was correlated to the proteomic response they elicit in B. subtilis. By drawing on a proteomic response library, including other envelope-targeting antibiotics such as bacitracin, vancomycin, gramicidin S, or valinomycin, YtrE could be identified as the most reliable marker protein for interfering with membrane-bound steps of cell wall biosynthesis. NadE and PspA were identified as markers for antibiotics interacting with the cytoplasmic membrane.


Assuntos
Bacillus subtilis/efeitos dos fármacos , Proteínas de Bactérias/biossíntese , Bacteriocinas/farmacologia , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Nisina/farmacologia , Peptídeos/farmacologia , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Transporte Biológico/efeitos dos fármacos , Biomarcadores/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Eletroforese em Gel Bidimensional , Potenciais da Membrana/efeitos dos fármacos , Potássio/metabolismo , Proteoma/antagonistas & inibidores , Proteoma/genética , Proteoma/metabolismo , Relação Estrutura-Atividade , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismo
9.
J Org Chem ; 77(22): 9954-8, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23116417

RESUMO

A novel linker for the synthesis of C-terminal acetylene-functionalized protected peptides is described. This SAM1 linker is applied in the manual Fmoc-based solid-phase peptide synthesis of Leu-enkephalin and in microwave-assisted automated synthesis of Maculatin 2.1, an antibacterial peptide that contains 18 amino acid residues. For the cleavage, treatment with tetramethylammonium fluoride results in protected acetylene-derivatized peptides. Alternatively, a one-pot cleavage-click procedure affords the protected 1,2,3-triazole conjugate in high yields after purification.


Assuntos
Acetileno/química , Acetileno/síntese química , Alcinos/química , Encefalina Leucina/química , Encefalina Leucina/síntese química , Peptídeos/química , Peptídeos/síntese química , Silanos/química , Micro-Ondas , Estrutura Molecular , Técnicas de Síntese em Fase Sólida
10.
Org Biomol Chem ; 10(5): 1088-92, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22179680

RESUMO

We describe the synthesis and coordination behaviour to copper(II) of two close structural triazacyclophane-based mimics of two often encountered aspartic acid and histidine containing metalloenzyme active sites. Coordination of these mimics to copper(I) and their reaction with molecular oxygen leads to the formation of dimeric bis(µ-hydroxo) dicopper(II) complexes.


Assuntos
Ácido Aspártico/química , Compostos Aza/química , Materiais Biomiméticos/química , Cobre/química , Compostos Heterocíclicos com 2 Anéis/química , Histidina/química , Metaloproteínas/química , Ácido Aspártico/metabolismo , Compostos Aza/metabolismo , Materiais Biomiméticos/metabolismo , Domínio Catalítico , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Cobre/metabolismo , Compostos Heterocíclicos com 2 Anéis/metabolismo , Histidina/metabolismo , Metaloproteínas/metabolismo , Oxigênio/metabolismo
11.
Beilstein J Org Chem ; 8: 1753-64, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209509

RESUMO

A series of small synthetic arginine and tryptophan containing peptides was prepared and analyzed for their antibacterial activity. The effect of N-terminal substitution with metallocenoyl groups such as ferrocene (FcCO) and ruthenocene (RcCO) was investigated. Antibacterial activity in different media, growth inhibition, and killing kinetics of the most active peptides were determined. The toxicity of selected derivatives was determined against erythrocytes and three human cancer cell lines. It was shown that the replacement of an N-terminal arginine residue with a metallocenoyl moiety modulates the activity of WRWRW-peptides against Gram-positive and Gram-negative bacteria. MIC values of 2-6 µM for RcCO-W(RW)(2) and 1-11 µM for (RW)(3) were determined. Interestingly, W(RW)(2)-peptides derivatized with ferrocene were significantly less active than those derivatized with ruthenocene which have similar structural but different electronic properties, suggesting a major influence of the latter. The high activities observed for the RcCO-W(RW)(2)- and (RW)(3)-peptides led to an investigation of the origin of activity of these peptides using several important activity-related parameters. Firstly, killing kinetics of the RcCO-W(RW)(2)-peptide versus killing kinetics of the (RW)(3) derivative showed faster reduction of the colony forming units for the RcCO-W(RW)(2)-peptide, although MIC values indicated higher activity for the (RW)(3)-peptide. This was confirmed by growth inhibition studies. Secondly, hemolysis studies revealed that both peptides did not lead to significant destruction of erythrocytes, even up to 500 µg/mL for (RW)(3) and 250 µg/mL for RcCO-W(RW)(2). In addition, toxicity against three human cancer cell lines (HepG2, HT29, MCF7) showed that the (RW)(3)-peptide had an IC(50) value of ~140 µM and the RcW(RW)(2) one of ~90 µM, indicating a potentially interesting therapeutic window. Both the killing kinetics and growth inhibition studies presented in this work point to a membrane-based mode of action for these two peptides, each having different kinetic parameters.

12.
J Comb Chem ; 10(6): 814-24, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18811207

RESUMO

In this report, we present the first library of tripodal synthetic receptor molecules containing three different, temporarily N-terminal protected peptide arms capable of performing hydrolytic reactions. To construct this library, the orthogonally protected triazacyclophane (TAC)-scaffold was used in the preparation of a split-mix library of 19 683 resin bound tripodal receptor molecules. For the construction of the peptide arms, three different sets of amino acids were used, each focused on one part of the catalytic triad as found in several families of hydrolytic enzymes. Therefore, in the sets of amino acids used to assemble these tripeptides, basic (containing His and Lys), nucleophilic (containing Ser and Cys), or acidic (containing Asp and Glu) amino acid residues were present. In addition, nonfunctional hydrophobic amino acid residues were introduced. Possible unfavorable electrostatic interactions of charged N-termini or their acetylation during screening were circumvented by trifluoroacetylation of the N-terminal amines. Screening was performed with a known esterase substrate, 7-acetoxycoumarin, which upon hydrolysis gave the fluorescent 7-hydroxycoumarin, leading to fluorescence of beads containing a hydrolytically active synthetic receptor. Although many synthetic receptors contain catalytic triad combinations, apparently, only a few showed hydrolytic activity. Sequence analysis of the active receptors showed that carboxylate-containing amino acids are frequently found in the acidic arm and that substrate cleavage is mediated by lysine (noncatalytic) or histidine (catalytic) residues. Kinetic analysis of resynthesized receptors showed that catalysis depended on the number of histidine residues and was not assisted by significant substrate binding.


Assuntos
Esterases/síntese química , Mimetismo Molecular , Oligopeptídeos/química , Sequência de Aminoácidos , Sítios de Ligação , Técnicas de Química Combinatória , Esterases/química , Hidrólise , Bibliotecas de Moléculas Pequenas
13.
Chem Commun (Camb) ; (46): 4895-7, 2007 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-18361361

RESUMO

We report the use of triazacyclophane (TAC)-scaffolded amino acids as a structural mimic for 3-histidine metal-binding sites in metalloproteins, especially for the mimicry of type-3 copper binding sites as are present in hemocyanin, tyrosinase and catechol oxidase.


Assuntos
Aminoácidos/química , Cobre/metabolismo , Metaloproteínas/química , Sítios de Ligação , Catecol Oxidase/química , Cobre/química , Hemocianinas/química , Histidina/química , Indicadores e Reagentes , Conformação Molecular , Mimetismo Molecular , Monofenol Mono-Oxigenase/química , Oxigênio/química , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Análise Espectral Raman , Vibração
14.
Chem Sci ; 7(5): 3092-3101, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29997801

RESUMO

The rational design of a set of hemin/G-quadruplex (hGQ)-dopamine binding aptamer (DBA) conjugates, acting as nucleoapzymes, is described. The nucleoapzyme constructs consist of a hGQ DNAzyme as a catalytic unit and DBA as a substrate binding unit that are brought into spatial proximity by a duplex scaffold composed of complementary oligonucleotide strands. When the hGQ unit is linked to the duplex scaffold via a single-strand DNA tether of variable length, the resulting nucleoapzymes reveal a moderate catalytic enhancement toward the H2O2-mediated oxidation of dopamine to aminochrome as compared to the process stimulated by the separated hGQ and DBA units (5-7 fold enhancement). This limited enhancement is attributed to inappropriate spatial positioning of the hGQ in respect to the dopamine binding site, and/or to the flexibility of the tether that links the hGQ catalytic site to the double-stranded scaffold. To solve this, rigidification of the hGQ/DBA conjugates by triplex oligonucleotide structures that anchor the hGQ to a duplex domain associated with the DBA units was achieved. By the sequential, programmed, triplex-controlled rigidification of the hGQ/DBA structure, a nucleoapzyme with superior catalytic activity toward the oxidation of dopamine to aminochrome is identified (30-fold catalytic enhancement). Molecular dynamics simulations reveal that in the resulting highly active rigidified nucleoapzyme structure, the hGQ catalytic site is positioned in spatial proximity to the opening of the DBA substrate binding site, thus rationalizing and supporting the enhanced catalytic functions of the system. Finally, the most active nucleoapzyme system was subjected to fuel- and anti-fuel strands that separate and re-assemble the nucleoapzyme structure, allowing "ON" and "OFF" switching of the nucleoapzyme catalytic functions.

15.
Chem Commun (Camb) ; 52(32): 5561-4, 2016 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-27020540

RESUMO

Lipidated DNAzymes or a lipidated Cu(II)-complex and lipidated aptamer sequences form supramolecular assemblies of micellar nucleoapzymes for the enhanced oxidation of dopamine to aminochrome. The catalytic functions of the micellar nucleoapzymes are attributed to the concentration of the substrate, using the aptamer units, in close proximity to the active sites.


Assuntos
Dopamina/química , Indolquinonas/química , Micelas , Catálise , Oxirredução
16.
Front Cell Dev Biol ; 4: 86, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27617260

RESUMO

RWRWRW-NH2 (MP196) is an amphipathic hexapeptide that targets the bacterial cytoplasmic membrane and inhibits cellular respiration and cell wall synthesis. In previous studies it showed promising activity against Gram-positive bacteria and no significant cytotoxicity or hemolysis. MP196 is therefore used as lead structure for developing more potent antibiotic derivatives. Here we present a more comprehensive study on the parent peptide MP196 with regard to clinically relevant parameters. We found that MP196 acts rapidly bactericidal killing 97% of initial CFU within 10 min at two times MIC. We were unable to detect resistance in standard 24 and 48 h resistance frequency assays. However, MP196 was effective against some but not all MRSA and VISA strains. Serum binding of MP196 was intermediate and we confirmed its low toxicity against mammalian cell lines. MP196 did neither induce NFκB activation nor cause an increase in IL8 levels at 250 µg/mL, and no IgE-dependent activation of basophil granulocytes was detected at 500 µg/mL. Yet, MP196 demonstrated acute toxicity in mice upon injection into the blood stream. Phase contrast microscopy of mouse blood treated with MP196 revealed a shrinking of erythrocytes at 250 µg/mL and severe morphological changes and lysis of erythrocytes at 500 µg/mL. These data suggest that MP196 derivatization directed at further lowering hemolysis could be instrumental in overcoming acute toxicity. The assessment of hemolysis is a critical step in the evaluation of the clinical potential of promising antimicrobial peptides and should be accompanied by microscopy-based morphological analysis of blood cells.

17.
Chem Commun (Camb) ; 51(6): 1100-3, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25449885

RESUMO

Two-sized luminescent nucleic acid-functionalized Ag nanoclusters (NCs) are implemented for the analysis and multiplexed detection of adenosine monophosphate, AMP, and of cocaine using aptamer-ligand complexes.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas de Química Analítica , Nanopartículas/química , Prata/química , Monofosfato de Adenosina/análise , Cocaína/análise , Ligantes , Luminescência
18.
ACS Nano ; 8(11): 11666-73, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25327411

RESUMO

Luminescent nucleic acid-stabilized Ag nanoclusters (Ag NCs) are applied for the optical detection of DNA and for the multiplexed analysis of genes. Two different sensing modules including Ag NCs as luminescence labels are described. One sensing module involves the assembly of a three-component sensing module composed of a nucleic acid-stabilized Ag NC and a quencher-modified nucleic acid hybridized with a nucleic acid scaffold that is complementary to the target DNA. The luminescence of the Ag NCs is quenched in the sensing module nanostructure. The strand displacement of the scaffold by the target DNA separates the nucleic acid-functionalized Ag NCs, leading to the turned-on luminescence of the NCs and to the optical readout of the sensing process. By implementing two different-sized Ag NC-modified sensing modules, the parallel multiplexed analysis of two genes (the Werner Syndrome gene and the HIV, human immunodeficiency, gene), using 615 and 560 nm luminescent Ag NCs, is demonstrated. The second sensing module includes the nucleic acid functionalized Ag NCs and the quencher-modified nucleic acid hybridized with a hairpin DNA scaffold. The luminescence of the Ag NCs is quenched in the sensing module. Opening of the hairpin by the target DNA triggers the luminescence of the Ag NCs, due to the spatial separation of the Ag NCs/quencher units. The system is applied for the optical detection of the BRAC1 gene. In addition, by implementing two-sized Ag NCs, the multiplexed analysis of two genes by the hairpin sensing module approach is demonstrated.


Assuntos
DNA/genética , Nanoestruturas , Ácidos Nucleicos/química , Pontos Quânticos , Prata/química , Sequência de Bases , Primers do DNA , Genes BRCA1 , Humanos
19.
Org Lett ; 15(12): 3126-9, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24490777

RESUMO

A new Silyl-based Alkyne Modifying (SAM)-linker for the synthesis of C-terminal acetylene-derivatized peptides is reported. The broad scope of this SAM2-linker is illustrated by manual synthesis of peptides that are side-chain protected, fully deprotected, and disulfide-bridged. Synthesis of a 14-meric (KLAKLAK)2 derivative by microwave-assisted automated SPPS and a one-pot cleavage click procedure yielding protected 1,2,3-triazole peptide conjugates are also described.


Assuntos
Acetileno/química , Alcinos/química , Proteínas Imobilizadas/química , Peptídeos/síntese química , Silanos/química , Acetileno/síntese química , Sequência de Aminoácidos , Micro-Ondas , Estrutura Molecular , Peptídeos/química
20.
Dalton Trans ; 42(27): 9799-802, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23525213

RESUMO

Binding of Leu-enkephalin and [Rh(III)(η(5)-Cp*)(η(6)-Tyr(1))]Leu-enkephalin to the recently published crystal structures of the µ- and δ-opioid receptor is studied. Docking of free Leu-enkephalin reveals two preferred conformations, one of which suggests an alternative binding site for the tyrosine residue. Furthermore, the three-dimensional solution structure of [Rh(III)(η(5)-Cp*)(η(6)-Tyr(1))]Leu-enkephalin was solved by using 2D NMR spectroscopic techniques.


Assuntos
Encefalina Leucina/química , Compostos Organometálicos/química , Receptores Opioides/química , Ródio/química , Sítios de Ligação , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA