Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Ann Surg Oncol ; 24(2): 347-354, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27469124

RESUMO

PURPOSE: Identification of indeterminate melanocytic skin lesions capable of neoplastic progression is suboptimal and may potentially result in unnecessary morbidity from surgery. MicroRNAs (miRs) may be useful in classifying indeterminate Spitz tumors as having high or low risk for malignant behavior. METHODS: RNA was extracted from paraffin-embedded tissues of benign nevi, benign Spitz tumors, indeterminate Spitz tumors, and Spitzoid melanomas in adults (n = 62) and children (n = 28). The expression profile of 12 miRs in adults (6 miRs in children) was analyzed by real-time polymerase chain reaction. RESULTS: Benign Spitz lesions were characterized by decreased expression of miR-125b and miR-211, and upregulation of miR-22, compared with benign nevi (p < 0.05). A comparison of Spitzoid melanomas to benign nevi revealed overexpression of miR-21, miR-150, and miR-155 in the malignant primaries (p < 0.05). In adults, Spitzoid melanomas exhibited upregulation of miR-21, miR-150, and miR-155 compared with indeterminate Spitz lesions. Indeterminate Spitz lesions with low-risk pathologic features had lower miR-21 and miR-155 expression compared with Spitzoid melanoma tumors in adults (p < 0.05), while pathologic high-risk indeterminate Spitz lesions had increased levels of miR-200c expression compared with low-risk indeterminate lesions (p < 0.05). Pediatric Spitzoid melanomas exhibited increased miR-21 expression compared with indeterminate Spitz lesions (p < 0.05). Moreover, miR-155 expression was increased in indeterminate lesions with mitotic counts >1 and depth of invasion >1 mm, suggesting miR-155 expression is associated with histological characteristics. CONCLUSIONS: miR expression profiles can be measured in indeterminate Spitz tumors and correlate with markers of malignant potential.


Assuntos
Biomarcadores Tumorais/genética , Melanoma/classificação , MicroRNAs/genética , Nevo de Células Epitelioides e Fusiformes/classificação , Neoplasias Cutâneas/classificação , Adulto , Criança , Diagnóstico Diferencial , Feminino , Seguimentos , Humanos , Masculino , Melanoma/diagnóstico , Melanoma/genética , Nevo de Células Epitelioides e Fusiformes/diagnóstico , Nevo de Células Epitelioides e Fusiformes/genética , Prognóstico , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/genética
2.
J Emerg Med ; 43(1): e5-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19682827

RESUMO

BACKGROUND: Cerebral vein and dural sinus thrombosis is a rare condition with a wide range of causes and a highly variable presentation. It can lead to significant morbidity, but scant literature is available describing diagnosis and treatment when this occurs after ligation of the internal jugular vein. OBJECTIVES: To discuss potential risk factors for cerebral vein and dural sinus thrombosis after ligation of the internal jugular vein, and present current options for diagnosis and treatment. CASE REPORT: A 23-year-old male construction worker was brought to the Emergency Department by Emergency Medical Services after sustaining a severe neck laceration from a hand-held grinder. He was treated with ligation of the left internal jugular vein, but subsequently developed severe headaches and symptoms of increased intracranial pressure. A magnetic resonance venogram of the head revealed a left transverse sinus thrombosis requiring treatment with anticoagulation. The placement of a lumboperitoneal shunt was ultimately needed for relief of his symptoms. CONCLUSIONS: Early diagnosis and aggressive therapeutic interventions are critical to prevent further morbidity in patients who develop cerebral vein and dural sinus thrombosis after ligation of the internal jugular vein.


Assuntos
Veias Jugulares/cirurgia , Trombose do Seio Lateral/diagnóstico , Trombose do Seio Lateral/terapia , Adulto , Humanos , Trombose do Seio Lateral/etiologia , Ligadura/efeitos adversos , Angiografia por Ressonância Magnética , Masculino , Tomografia Computadorizada por Raios X , Adulto Jovem
3.
J Surg Res ; 166(1): e59-69, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21193206

RESUMO

BACKGROUND: Although many sepsis treatments have shown efficacy in acute animal models, at present only activated protein C is effective in humans. The likely reason for this discrepancy is that most of the animal models used for preclinical testing do not accurately replicate the complex pathogenesis of human sepsis. Our objective in this study was to develop a clinically applicable model of severe sepsis and gut ischemia/reperfusion (I/R) that would cause multiple organ injury over a period of 48 h. MATERIALS AND METHODS: Anesthetized, instrumented, and ventilated pigs were subjected to a "two-hit" injury by placement of a fecal clot through a laparotomy and by clamping the superior mesenteric artery (SMA) for 30 min. The animals were monitored for 48 h. Wide spectrum antibiotics and intravenous fluids were given to maintain hemodynamic status. FiO(2) was increased in response to oxygen desaturation. Twelve hours following injury, a drain was placed in the laparotomy wound. Extensive hemodynamic, lung, kidney, liver, and renal function measurements and serial measurements of arterial and mixed venous blood gases were made. Bladder pressure was measured as a surrogate for intra-peritoneal pressure to identify the development of the abdominal compartment syndrome (ACS). Plasma and peritoneal ascites cytokine concentration were measured at regular intervals. Tissues were harvested and fixed at necropsy for detailed morphometric analysis. RESULTS: Polymicrobial sepsis developed in all animals. There was a progressive deterioration of organ function over the 48 h. The lung, kidney, liver, and intestine all demonstrated clinical and histopathologic injury. Acute lung injury (ALI) and ACS developed by consensus definitions. Increases in multiple cytokines in serum and peritoneal fluid paralleled the dysfunction found in major organs. CONCLUSION: This animal model of Sepsis+I/R replicates the systemic inflammation and dysfunction of the major organ systems that is typically seen in human sepsis and trauma patients. The model should be useful in deciphering the complex pathophysiology of septic shock as it transitions to end-organ injury thus allowing sophisticated preclinical studies on potential treatments.


Assuntos
Modelos Animais de Doenças , Insuficiência de Múltiplos Órgãos/fisiopatologia , Traumatismo por Reperfusão/fisiopatologia , Choque Séptico/fisiopatologia , Sus scrofa , Animais , Gasometria , Pressão Sanguínea/fisiologia , Citocinas/sangue , Eletrólitos/sangue , Feminino , Frequência Cardíaca/fisiologia , Humanos , Estimativa de Kaplan-Meier , Rim/fisiologia , Insuficiência de Múltiplos Órgãos/mortalidade , Insuficiência de Múltiplos Órgãos/terapia , Pressão Propulsora Pulmonar/fisiologia , Traumatismo por Reperfusão/mortalidade , Traumatismo por Reperfusão/terapia , Choque Séptico/mortalidade , Choque Séptico/terapia
4.
J Surg Res ; 164(1): e147-53, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20851418

RESUMO

BACKGROUND: High frequency oscillatory ventilation (HFOV) is frequently utilized for patients with acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). However, precise criteria to titrate mean airway pressure (mPaw) and FiO(2) as the patient's condition improves are lacking. We hypothesized that reducing mPaw and FiO(2) too quickly after reaching target arterial oxygen saturation levels would promote ventilator induced lung injury (VILI). MATERIALS AND METHODS: ALI was induced by instilling 3% Tween 20. Pigs were placed supine and received 30 min of nonprotective ventilation. Pigs were separated into two groups: HFOV constant (HFOVC, n = 3) = constant mPaw and FiO(2) for the duration; HFOV titrated (HFOVT, n = 4) = FiO(2) and/or mPaw were reduced every 30 min if the oxygen saturation remained between 88%-95%. Hemodynamic and pulmonary measurements were made at baseline, after lung injury, and every 30 min during the 6-h study. Lung histopathology was determined by quantifying alveolar hyperdistension, fibrin, congestion, atelectasis, and polymorphonuclear leukocyte (PMN) infiltration. RESULTS: Oxygenation was significantly lower in the HFOVT group compared to the HFOVC group after 6 h. Lung histopathology was significantly increased in the HFOVT group in the following categories: PMN infiltration, alveolar hyperdistension, congestion, and fibrin deposition. CONCLUSIONS: Rapid reduction of mPaw and FiO(2) in our ALI model significantly reduced oxygenation, but, more importantly, caused VILI as evidenced by increased lung inflammation and alveolar hyperdistension. Specific criteria for titration of mPaw and inspired oxygen are needed to maximize the lung protective effects of HFOV while maintaining adequate gas exchange.


Assuntos
Lesão Pulmonar Aguda/terapia , Ventilação de Alta Frequência/métodos , Oxigenoterapia/métodos , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/fisiopatologia , Animais , Gasometria , Pressão Sanguínea/fisiologia , Modelos Animais de Doenças , Frequência Cardíaca/fisiologia , Pressão , Alvéolos Pulmonares/patologia , Atelectasia Pulmonar/patologia , Atelectasia Pulmonar/fisiopatologia , Atelectasia Pulmonar/terapia , Circulação Pulmonar , Sus scrofa
5.
J Surg Res ; 162(2): 250-7, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19560160

RESUMO

BACKGROUND: Patients with acute respiratory distress syndrome (ARDS) are often ventilated with high airway pressure. Brief loss of airway pressure may lead to an extended loss of oxygenation. While using high frequency oscillatory ventilation (HFOV) in a porcine acute lung injury model, two animals became disconnected from the ventilator with subsequent loss of airway pressure. We compared the two disconnected animals to the two animals that remained connected to determine causes for the extended reduction in oxygenation. METHODS: ARDS was induced using 5% Tween. Thirty min of nonprotective ventilation (NPV) followed before placing the pigs on HFOV. Measurements were made at baseline, after lung injury, and every 30min during the 6-h study. Disconnections were treated by hand-ventilation and a recruitment maneuver before being placed back on HFOV. The lungs were histologically analyzed and wet/dry weights were measured to determine lung edema. RESULTS: Hemodynamics and lung function were similar in all pigs at baseline, after injury, and following NPV. The animals that remained connected to the oscillator showed a continued improvement in PaO(2)/FiO(2) (P/F) ratio throughout the study. The animals that experienced the disconnection had a significant loss of lung function that never recovered. The disconnect animals had more diffuse alveolar disease on histologic analysis. CONCLUSIONS: A significant fall in lung function results following disconnection from HFOV, which remains depressed for a substantial period of time despite efforts to reopen the lung. Dispersion of edema fluid is a possible mechanism for the protracted loss of lung function.


Assuntos
Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/terapia , Anestesia Geral , Animais , Gasometria , Pressão Sanguínea , Modelos Animais de Doenças , Diurese , Frequência Cardíaca , Hemodinâmica , Humanos , Lesão Pulmonar/fisiopatologia , Modelos Animais , Tamanho do Órgão , Artéria Pulmonar/fisiologia , Artéria Pulmonar/fisiopatologia , Testes de Função Respiratória , Suínos
6.
J Appl Physiol (1985) ; 106(3): 757-65, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19074576

RESUMO

Inappropriate mechanical ventilation in patients with acute respiratory distress syndrome can lead to ventilator-induced lung injury (VILI) and increase the morbidity and mortality. Reopening collapsed lung units may significantly reduce VILI, but the mechanisms governing lung recruitment are unclear. We thus investigated the dynamics of lung recruitment at the alveolar level. Rats (n = 6) were anesthetized and mechanically ventilated. The lungs were then lavaged with saline to simulate acute respiratory distress syndrome (ARDS). A left thoracotomy was performed, and an in vivo microscope was placed on the lung surface. The lung was recruited to three recruitment pressures (RP) of 20, 30, or 40 cmH(2)O for 40 s while subpleural alveoli were continuously filmed. Following measurement of microscopic alveolar recruitment, the lungs were excised, and macroscopic gross lung recruitment was digitally filmed. Recruitment was quantified by computer image analysis, and data were interpreted using a mathematical model. The majority of alveolar recruitment (78.3 +/- 7.4 and 84.6 +/- 5.1%) occurred in the first 2 s (T2) following application of RP 30 and 40, respectively. Only 51.9 +/- 5.4% of the microscopic field was recruited by T2 with RP 20. There was limited recruitment from T2 to T40 at all RPs. The majority of gross lung recruitment also occurred by T2 with gradual recruitment to T40. The data were accurately predicted by a mathematical model incorporating the effects of both pressure and time. Alveolar recruitment is determined by the magnitude of recruiting pressure and length of time pressure is applied, a concept supported by our mathematical model. Such a temporal dependence of alveolar recruitment needs to be considered when recruitment maneuvers for clinical application are designed.


Assuntos
Lesão Pulmonar Aguda , Adaptação Fisiológica/fisiologia , Respiração com Pressão Positiva/efeitos adversos , Alvéolos Pulmonares/patologia , Síndrome do Desconforto Respiratório/terapia , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/fisiopatologia , Animais , Modelos Animais de Doenças , Hemodinâmica/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Modelos Estatísticos , Respiração com Pressão Positiva/métodos , Alvéolos Pulmonares/fisiopatologia , Ventilação Pulmonar/fisiologia , Ratos , Ratos Sprague-Dawley , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/fisiopatologia , Fatores de Tempo
7.
Shock ; 37(4): 424-32, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22258231

RESUMO

Experimental pharmacotherapies for the acute respiratory distress syndrome (ARDS) have not met with success in the clinical realm. We hypothesized that chemically modified tetracycline 3 (CMT-3), an anti-inflammatory agent that blocks multiple proteases and cytokines, would prevent ARDS and injury in other organs in a clinically applicable, porcine model of inflammation-induced lung injury. Pigs (n = 15) were anesthetized and instrumented for monitoring. A "2-hit" injury was induced: (a) peritoneal sepsis-by placement of a fecal clot in the peritoneum, and (b) ischemia/reperfusion-by clamping the superior mesenteric artery for 30 min. Animals were randomized into two groups: CMT-3 group (n = 7) received CMT-3 (200 mg/kg); placebo group (n = 9) received the same dose of a CMT-3 vehicle (carboxymethylcellulose). Experiment duration was 48 h or until early mortality. Animals in both groups developed polymicrobial bacteremia. Chemically modified tetracycline 3 treatment prevented ARDS as indicated by PaO(2)/FIO(2) ratio, static compliance, and plateau airway pressure (P < 0.05 vs. placebo). It improved all histological lesions of ARDS (P < 0.05 vs. placebo). The placebo group developed severe ARDS, coagulopathy, and histological injury to the bowel. Chemically modified tetracycline 3 treatment prevented coagulopathy and protected against bowel injury. It significantly lowered plasma concentrations of interleukin 1ß (IL-1ß), tumor necrosis factor α, IL-6, IL-8, and IL-10. This study presents a clinically relevant model of lung injury in which CMT-3 treatment prevented the development of ARDS due in part to reduction of multiple plasma cytokines. Treatment of sepsis patients with CMT-3 could significantly reduce progression from sepsis into ARDS.


Assuntos
Lesão Pulmonar/etiologia , Traumatismo por Reperfusão/complicações , Síndrome do Desconforto Respiratório/prevenção & controle , Sepse/complicações , Tetraciclinas/uso terapêutico , Animais
8.
Shock ; 34(5): 525-34, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20823698

RESUMO

Sepsis and hemorrhage can result in injury to multiple organs and is associated with an extremely high rate of mortality. We hypothesized that peritoneal negative pressure therapy (NPT) would reduce systemic inflammation and organ damage. Pigs (n = 12) were anesthetized and surgically instrumented for hemodynamic monitoring. Through a laparotomy, the superior mesenteric artery was clamped for 30 min. Feces was mixed with blood to form a fecal clot that was placed into the peritoneum, and the abdomen was closed. All subjects were treated with standard isotonic fluid resuscitation, wide spectrum antibiotics, and mechanical ventilation, and were monitored for 48 h. Animals were separated into two groups 12 h (T12) after injury: for NPT (n = 6), an abdominal wound vacuum dressing was placed in the laparotomy, and negative pressure (-125 mmHg) was applied (T12 - T48), whereas passive drainage (n = 6) was identical to the NPT group except the abdomen was allowed to passively drain. Negative pressure therapy removed a significantly greater volume of ascites (860 ± 134 mL) than did passive drainage (88 ± 56 mL). Systemic inflammation (e.g. TNF-α, IL-1ß, IL-6) was significantly reduced in the NPT group and was associated with significant improvement in intestine, lung, kidney, and liver histopathology. Our data suggest NPT efficacy is partially due to an attenuation of peritoneal inflammation by the removal of ascites. However, the exact mechanism needs further elucidation. The clinical implication of this study is that sepsis/trauma can result in an inflammatory ascites that may perpetuate organ injury; removal of the ascites can break the cycle and reduce organ damage.


Assuntos
Ascite/terapia , Intestinos/irrigação sanguínea , Isquemia/complicações , Laparotomia , Insuficiência de Múltiplos Órgãos/prevenção & controle , Tratamento de Ferimentos com Pressão Negativa , Peritonite/complicações , Traumatismo por Reperfusão/terapia , Sepse/terapia , Animais , Ascite/etiologia , Drenagem , Fezes , Feminino , Hemodinâmica , Interleucina-1beta/sangue , Interleucina-6/sangue , Intestinos/patologia , Pulmão/patologia , Insuficiência de Múltiplos Órgãos/etiologia , Permeabilidade , Distribuição Aleatória , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/patologia , Testes de Função Respiratória , Sepse/etiologia , Sus scrofa , Suínos , Fator de Necrose Tumoral alfa/análise , Vísceras/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA