Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nat Commun ; 14(1): 3953, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402735

RESUMO

Urocortin 2 (UCN2) acts as a ligand for the G protein-coupled receptor corticotropin-releasing hormone receptor 2 (CRHR2). UCN2 has been reported to improve or worsen insulin sensitivity and glucose tolerance in vivo. Here we show that acute dosing of UCN2 induces systemic insulin resistance in male mice and skeletal muscle. Inversely, chronic elevation of UCN2 by injection with adenovirus encoding UCN2 resolves metabolic complications, improving glucose tolerance. CRHR2 recruits Gs in response to low concentrations of UCN2, as well as Gi and ß-Arrestin at high concentrations of UCN2. Pre-treating cells and skeletal muscle ex vivo with UCN2 leads to internalization of CRHR2, dampened ligand-dependent increases in cAMP, and blunted reductions in insulin signaling. These results provide mechanistic insights into how UCN2 regulates insulin sensitivity and glucose metabolism in skeletal muscle and in vivo. Importantly, a working model was derived from these results that unifies the contradictory metabolic effects of UCN2.


Assuntos
Resistência à Insulina , Animais , Masculino , Camundongos , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Glucose/metabolismo , Insulina , Ligantes , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Urocortinas/genética , Urocortinas/metabolismo
2.
Cells ; 11(7)2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35406637

RESUMO

Growth and differentiation factor 15 (GDF15) is a cytokine reported to cause anorexia and weight loss in animal models. Neutralization of GDF15 was efficacious in mitigating cachexia and improving survival in cachectic tumor models. Interestingly, elevated circulating GDF15 was reported in patients with pulmonary arterial hypertension and heart failure, but it is unclear whether GDF15 contributes to cachexia in these disease conditions. In this study, rats treated with monocrotaline (MCT) manifested a progressive decrease in body weight, food intake, and lean and fat mass concomitant with elevated circulating GDF15, as well as development of right-ventricular dysfunction. Cotreatment of GDF15 antibody mAb2 with MCT prevented MCT-induced anorexia and weight loss, as well as preserved lean and fat mass. These results indicate that elevated GDF15 by MCT is causal to anorexia and weight loss. GDF15 mAb2 is efficacious in mitigating MCT-induced cachexia in vivo. Furthermore, the results suggest GDF15 inhibition is a potential therapeutic approach to alleviate cardiac cachexia in patients.


Assuntos
Anorexia , Anticorpos Monoclonais , Caquexia , Fator 15 de Diferenciação de Crescimento , Animais , Anorexia/induzido quimicamente , Anorexia/complicações , Anticorpos Monoclonais/farmacologia , Caquexia/etiologia , Caquexia/prevenção & controle , Fator 15 de Diferenciação de Crescimento/antagonistas & inibidores , Humanos , Monocrotalina/toxicidade , Ratos , Redução de Peso
3.
Heliyon ; 8(10): e11091, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36303906

RESUMO

The AMP-activated protein kinase (AMPK) is a cellular sensor of energetics and when activated in skeletal muscle during contraction can impart changes in skeletal muscle metabolism. Therapeutics that selectively activate AMPK have been developed to lower glucose levels through increased glucose disposal rates as an approach to abrogate the hyperglycemic state of diabetes; however, the metabolic fate of glucose following AMPK activation remains unclear. We have used a combination of in vivo evaluation of glucose homeostasis and ex vivo skeletal muscle incubation to systematically evaluate metabolism following pharmacological activation of AMPK with PF-739, comparing this with AMPK activation through sustained intermittent electrical stimulation of contraction. These methods to activate AMPK result in increased glucose uptake but divergent metabolism of glucose: pharmacological activation results in increased glycogen accumulation while contraction-induced glucose uptake results in increased lactate formation and glucose oxidation. These results provide additional evidence to support a role for AMPK in control of skeletal muscle metabolism and additional insight into the potential for AMPK stimulation with small molecule direct activators.

4.
Mol Metab ; 66: 101611, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36220546

RESUMO

OBJECTIVE: Branched chain amino acid (BCAA) catabolic defects are implicated to be causal determinates of multiple diseases. This work aimed to better understand how enhancing BCAA catabolism affected metabolic homeostasis as well as the mechanisms underlying these improvements. METHODS: The rate limiting step of BCAA catabolism is the irreversible decarboxylation by the branched chain ketoacid dehydrogenase (BCKDH) enzyme complex, which is post-translationally controlled through phosphorylation by BCKDH kinase (BDK). This study utilized BT2, a small molecule allosteric inhibitor of BDK, in multiple mouse models of metabolic dysfunction and NAFLD including the high fat diet (HFD) model with acute and chronic treatment paradigms, the choline deficient and methionine minimal high fat diet (CDAHFD) model, and the low-density lipoprotein receptor null mouse model (Ldlr-/-). shRNA was additionally used to knock down BDK in liver to elucidate liver-specific effects of BDK inhibition in HFD-fed mice. RESULTS: A rapid improvement in insulin sensitivity was observed in HFD-fed and lean mice after BT2 treatment. Resistance to steatosis was assessed in HFD-fed mice, CDAHFD-fed mice, and Ldlr-/- mice. In all cases, BT2 treatment reduced steatosis and/or inflammation. Fasting and refeeding demonstrated a lack of response to feeding-induced changes in plasma metabolites including insulin and beta-hydroxybutyrate and hepatic gene changes in BT2-treated mice. Mechanistically, BT2 treatment acutely altered the expression of genes involved in fatty acid oxidation and lipogenesis in liver, and upstream regulator analysis suggested that BT2 treatment activated PPARα. However, BT2 did not directly activate PPARα in vitro. Conversely, shRNA-AAV-mediated knockdown of BDK specifically in liver in vivo did not demonstrate any effects on glycemia, steatosis, or PPARα-mediated gene expression in mice. CONCLUSIONS: These data suggest that BT2 treatment acutely improves metabolism and liver steatosis in multiple mouse models. While many molecular changes occur in liver in BT2-treated mice, these changes were not observed in mice with AAV-mediated shRNA knockdown of BDK. All together, these data suggest that systemic BDK inhibition is required to improve metabolism and steatosis by prolonging a fasting signature in a paracrine manner. Therefore, BCAA may act as a "fed signal" to promote nutrient storage and reduced systemic BCAA levels as shown in this study via BDK inhibition may act as a "fasting signal" to prolong the catabolic state.


Assuntos
Fígado Gorduroso , PPAR alfa , Animais , Camundongos , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Jejum , Camundongos Knockout , RNA Interferente Pequeno
5.
Mol Metab ; 51: 101259, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34033941

RESUMO

OBJECTIVE: Skeletal muscle is an attractive target for blood glucose-lowering pharmacological interventions. Oral dosing of small molecule direct pan-activators of AMPK that bind to the allosteric drug and metabolite (ADaM) site, lowers blood glucose through effects in skeletal muscle. The molecular mechanisms responsible for this effect are not described in detail. This study aimed to illuminate the mechanisms by which ADaM-site activators of AMPK increase glucose uptake in skeletal muscle. Further, we investigated the consequence of co-stimulating muscles with two types of AMPK activators i.e., ADaM-site binding small molecules and the prodrug AICAR. METHODS: The effect of the ADaM-site binding small molecules (PF739 and 991), AICAR or co-stimulation with PF739 or 991 and AICAR on muscle glucose uptake was investigated ex vivo in m. extensor digitorum longus (EDL) excised from muscle-specific AMPKα1α2 as well as whole-body AMPKγ3-deficient mouse models. In vitro complex-specific AMPK activity was measured by immunoprecipitation and molecular signaling was assessed by western blotting in muscle lysate. To investigate the transferability of these studies, we treated diet-induced obese mice in vivo with PF739 and measured complex-specific AMPK activation in skeletal muscle. RESULTS: Incubation of skeletal muscle with PF739 or 991 increased skeletal muscle glucose uptake in a dose-dependent manner. Co-incubating PF739 or 991 with a maximal dose of AICAR increased glucose uptake to a greater extent than any of the treatments alone. Neither PF739 nor 991 increased AMPKα2ß2γ3 activity to the same extent as AICAR, while co-incubation led to potentiated effects on AMPKα2ß2γ3 activation. In muscle from AMPKγ3 KO mice, AICAR-stimulated glucose uptake was ablated. In contrast, the effect of PF739 or 991 on glucose uptake was not different between WT and AMPKγ3 KO muscles. In vivo PF739 treatment lowered blood glucose levels and increased muscle AMPKγ1-complex activity 2-fold, while AMPKα2ß2γ3 activity was not affected. CONCLUSIONS: ADaM-site binding AMPK activators increase glucose uptake independently of AMPKγ3. Co-incubation with PF739 or 991 and AICAR potentiates the effects on muscle glucose uptake and AMPK activation. In vivo, PF739 lowers blood glucose and selectively activates muscle AMPKγ1-complexes. Collectively, this suggests that pharmacological activation of AMPKγ1-containing complexes in skeletal muscle can increase glucose uptake and can lead to blood glucose lowering.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Glicemia/efeitos dos fármacos , Músculo Esquelético/metabolismo , Obesidade/tratamento farmacológico , Ribonucleotídeos/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Aminoimidazol Carboxamida/farmacologia , Aminoimidazol Carboxamida/uso terapêutico , Animais , Glicemia/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Obesidade/sangue , Obesidade/etiologia , Obesidade/metabolismo , Fosforilação/efeitos dos fármacos , Ribonucleotídeos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
6.
EBioMedicine ; 31: 122-132, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29673898

RESUMO

Dysregulation of hepatic lipid and cholesterol metabolism is a significant contributor to cardiometabolic health, resulting in excessive liver lipid accumulation and ultimately non-alcoholic steatohepatitis (NASH). Therapeutic activators of the AMP-Activated Protein Kinase (AMPK) have been proposed as a treatment for metabolic diseases; we show that the AMPK ß1-biased activator PF-06409577 is capable of lowering hepatic and systemic lipid and cholesterol levels in both rodent and monkey preclinical models. PF-06409577 is able to inhibit de novo lipid and cholesterol synthesis pathways, and causes a reduction in hepatic lipids and mRNA expression of markers of hepatic fibrosis. These effects require AMPK activity in the hepatocytes. Treatment of hyperlipidemic rats or cynomolgus monkeys with PF-06409577 for 6weeks resulted in a reduction in circulating cholesterol. Together these data suggest that activation of AMPK ß1 complexes with PF-06409577 is capable of impacting multiple facets of liver disease and represents a promising strategy for the treatment of NAFLD and NASH in humans.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ativadores de Enzimas/farmacologia , Hepatócitos/enzimologia , Indóis/farmacologia , Fígado/enzimologia , Hepatopatia Gordurosa não Alcoólica , Animais , Linhagem Celular , Haplorrinos , Hepatócitos/patologia , Humanos , Fígado/patologia , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/patologia , Ratos
7.
Cell Metab ; 25(5): 1147-1159.e10, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28467931

RESUMO

The AMP-activated protein kinase (AMPK) is a potential therapeutic target for metabolic diseases based on its reported actions in the liver and skeletal muscle. We evaluated two distinct direct activators of AMPK: a non-selective activator of all AMPK complexes, PF-739, and an activator selective for AMPK ß1-containing complexes, PF-249. In cells and animals, both compounds were effective at activating AMPK in hepatocytes, but only PF-739 was capable of activating AMPK in skeletal muscle. In diabetic mice, PF-739, but not PF-249, caused a rapid lowering of plasma glucose levels that was diminished in the absence of skeletal muscle, but not liver, AMPK heterotrimers and was the result of an increase in systemic glucose disposal with no impact on hepatic glucose production. Studies of PF-739 in cynomolgus monkeys confirmed translation of the glucose lowering and established activation of AMPK in skeletal muscle as a potential therapeutic approach to treat diabetic patients.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aminopiridinas/farmacologia , Ativadores de Enzimas/farmacologia , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Indóis/farmacologia , Aminopiridinas/uso terapêutico , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ativadores de Enzimas/uso terapêutico , Feminino , Hipoglicemiantes/uso terapêutico , Indóis/uso terapêutico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Macaca fascicularis , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo
8.
J Alzheimers Dis ; 9(4): 381-92, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16917146

RESUMO

Homocysteinemia is associated with cognitive dysfunction in the elderly ranging from subtle cognitive decline to dementia. Homocysteine is generated from methionine as a product of biological methylation reactions and is disposed of through reactions that require folate and vitamins B12 and B6. While different disruptions in these reactions can result in homocysteinemia, it is unclear if they will also result in homocysteine-mediated cognitive dysfunction. Young ApoE-deficient mice were fed one of four diets with differing methionine and B-vitamin content for eight weeks, before undergoing psychomotor tests, the Morris Water Maze test of spatial memory and learning, and measurement of home-cage activity. B-vitamin deficiency induced homocysteinemia and selectively impaired Morris Water Maze performance without affecting other behavioral measures. The cognitive deficits occurred in the absence of overt histologic neurodegeneration but in association with moderate impairments of brain methylation potential. Diets that yielded cognitive deficits were different from those that exacerbated aortic pathology. These findings are inconsistent with a single mechanism linking homocysteinemia to neurological dysfunctions mediated by homocysteine vasotoxicity. Instead, they indicate that different "types" of homocysteinemia, or in other words different impairments of nutritional metabolism affecting homocysteine levels, may lead to different end organ dysfunctions and/or diseases.


Assuntos
Apolipoproteínas E/deficiência , Transtornos Cognitivos , Hiper-Homocisteinemia/sangue , Hiper-Homocisteinemia/epidemiologia , Distúrbios Nutricionais/epidemiologia , Animais , Apolipoproteínas E/sangue , Comportamento Animal/fisiologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Transtornos Cognitivos/epidemiologia , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/fisiopatologia , Modelos Animais de Doenças , Deficiência de Ácido Fólico/epidemiologia , Deficiência de Ácido Fólico/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Metionina/sangue , Metionina/deficiência , Camundongos , Testes Neuropsicológicos , Distúrbios Nutricionais/sangue , Desempenho Psicomotor/fisiologia , Índice de Gravidade de Doença , Percepção Espacial/fisiologia , Deficiência de Vitamina B 12/sangue , Deficiência de Vitamina B 12/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA