Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(2): e2204750120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595699

RESUMO

Exercise is a nonpharmacological intervention that improves health during aging and a valuable tool in the diagnostics of aging-related diseases. In muscle, exercise transiently alters mitochondrial functionality and metabolism. Mitochondrial fission and fusion are critical effectors of mitochondrial plasticity, which allows a fine-tuned regulation of organelle connectiveness, size, and function. Here we have investigated the role of mitochondrial dynamics during exercise in the model organism Caenorhabditis elegans. We show that in body-wall muscle, a single exercise session induces a cycle of mitochondrial fragmentation followed by fusion after a recovery period, and that daily exercise sessions delay the mitochondrial fragmentation and physical fitness decline that occur with aging. Maintenance of proper mitochondrial dynamics is essential for physical fitness, its enhancement by exercise training, and exercise-induced remodeling of the proteome. Surprisingly, among the long-lived genotypes we analyzed (isp-1,nuo-6, daf-2, eat-2, and CA-AAK-2), constitutive activation of AMP-activated protein kinase (AMPK) uniquely preserves physical fitness during aging, a benefit that is abolished by impairment of mitochondrial fission or fusion. AMPK is also required for physical fitness to be enhanced by exercise, with our findings together suggesting that exercise may enhance muscle function through AMPK regulation of mitochondrial dynamics. Our results indicate that mitochondrial connectivity and the mitochondrial dynamics cycle are essential for maintaining physical fitness and exercise responsiveness during aging and suggest that AMPK activation may recapitulate some exercise benefits. Targeting mechanisms to optimize mitochondrial fission and fusion, as well as AMPK activation, may represent promising strategies for promoting muscle function during aging.


Assuntos
Proteínas Quinases Ativadas por AMP , Dinâmica Mitocondrial , Animais , Dinâmica Mitocondrial/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Envelhecimento/fisiologia , Caenorhabditis elegans/metabolismo , Exercício Físico , Aptidão Física , Músculo Esquelético/metabolismo
2.
Free Radic Biol Med ; 129: 155-168, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30227272

RESUMO

Mitochondrial dysfunction characterized by impaired bioenergetics, oxidative stress and aldehydic load is a hallmark of heart failure. Recently, different research groups have provided evidence that selective activation of mitochondrial detoxifying systems that counteract excessive accumulation of ROS, RNS and reactive aldehydes is sufficient to stop cardiac degeneration upon chronic stress, such as heart failure. Therefore, pharmacological and non-pharmacological approaches targeting mitochondria detoxification may play a critical role in the prevention or treatment of heart failure. In this review we discuss the most recent findings on the central role of mitochondrial dysfunction, oxidative stress and aldehydic load in heart failure, highlighting the most recent preclinical and clinical studies using mitochondria-targeted molecules and exercise training as effective tools against heart failure.


Assuntos
Antioxidantes/uso terapêutico , Materiais Biomiméticos/uso terapêutico , Cardiotônicos/uso terapêutico , Insuficiência Cardíaca/terapia , Mitocôndrias Cardíacas/efeitos dos fármacos , Ubiquinona/análogos & derivados , Aldeídos/antagonistas & inibidores , Aldeídos/metabolismo , Animais , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Metabolismo Energético/efeitos dos fármacos , Exercício Físico , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Malondialdeído/antagonistas & inibidores , Malondialdeído/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Nitrogênio/antagonistas & inibidores , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/química , Ubiquinona/uso terapêutico
3.
Cardiovasc Res ; 114(7): 1006-1015, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29579152

RESUMO

Aims: We previously demonstrated that acute ethanol administration protects the heart from ischaemia/reperfusion (I/R) injury thorough activation of aldehyde dehydrogenase 2 (ALDH2). Here, we characterized the role of acetaldehyde, an intermediate product from ethanol metabolism, and its metabolizing enzyme, ALDH2, in an ex vivo model of cardiac I/R injury. Methods and results: We used a combination of homozygous knock-in mice (ALDH2*2), carrying the human inactivating point mutation ALDH2 (E487K), and a direct activator of ALDH2, Alda-1, to investigate the cardiac effect of acetaldehyde. The ALDH2*2 mice have impaired acetaldehyde clearance, recapitulating the human phenotype. Yet, we found a similar infarct size in wild type (WT) and ALDH2*2 mice. Similar to ethanol-induced preconditioning, pre-treatment with 50 µM acetaldehyde increased ALDH2 activity and reduced cardiac injury in hearts of WT mice without affecting cardiac acetaldehyde levels. However, acetaldehyde pre-treatment of hearts of ALDH2*2 mice resulted in a three-fold increase in cardiac acetaldehyde levels and exacerbated I/R injury. Therefore, exogenous acetaldehyde appears to have a bimodal effect in I/R, depending on the ALDH2 genotype. Further supporting an ALDH2 role in cardiac preconditioning, pharmacological ALDH2 inhibition abolished ethanol-induced cardioprotection in hearts of WT mice, whereas a selective activator, Alda-1, protected ALDH2*2 against ethanol-induced cardiotoxicity. Finally, either genetic or pharmacological inhibition of ALDH2 mitigated ischaemic preconditioning. Conclusion: Taken together, our findings suggest that low levels of acetaldehyde are cardioprotective whereas high levels are damaging in an ex vivo model of I/R injury and that ALDH2 is a major, but not the only, regulator of cardiac acetaldehyde levels and protection from I/R.


Assuntos
Acetaldeído/farmacologia , Aldeído-Desidrogenase Mitocondrial/metabolismo , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Acetaldeído/metabolismo , Acetaldeído/toxicidade , Aldeído-Desidrogenase Mitocondrial/genética , Animais , Cardiotoxicidade , Linhagem Celular , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ativação Enzimática , Técnicas de Introdução de Genes , Genótipo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Fenótipo , Mutação Puntual , Ratos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA