Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Biosaf ; 24(3): 134-140, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36032337

RESUMO

Introduction: Animal carcasses differ in composition from other types of solid waste, and through prior testing it was determined that cycle parameters applied to general, solid biohazardous waste did not ensure proper sterilization of ferret carcasses. Objectives: The goals of this study were to develop and validate an autoclave cycle that would ensure the decontamination of infectious animal carcasses before removal from an animal biosafety level 2/3 containment suite for downstream disposal and to test different ways to prepare and package animal carcasses for autoclaving. Methods: Intact ferret carcasses were implanted with biological indicators, and the carcasses were placed in biohazard bags, then into metal pans. To test the efficacy of the autoclave cycle on larger biomasses, 1, 2, or 4 ferret carcasses were placed in a biohazard bag. A total of 4 carcasses were placed in each pan. An autoclave cycle was created to begin the study. After initial tests, minor modifications to the initial test cycle parameters were made, and a new cycle was validated for ferret carcasses up to 2 kg each. Parameters for the validated cycle were as follows: sterilization time 240 minutes, temperature 125°C, 5 prevacuum pulses, and chamber pressure 15 psi. Results: The results of this study indicate that an extended sterilization time is required to successfully decontaminate animal carcasses compared with regular, solid, and biohazardous waste. Conclusions: This study demonstrates that it is possible to sterilize multiple intact ferret carcasses per load under validated autoclave cycle conditions.

2.
ILAR J ; 59(2): 144-149, 2018 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-30590683

RESUMO

The procedures necessary to perform testing in a veterinary diagnostic laboratory have inherent associated risks to personnel in regard to exposure to infectious agents. In research institutions animals can be experimentally infected, acquire naturally occurring infections and can also be exposed to other hazards such as toxic chemicals or radiologic entities. A critical component of the use of animals in a research environment is the collaboration between the responsible researcher and the veterinary diagnostic laboratory with the institutional health and safety professionals to ensure that the proper engineering controls, personal protective equipment, laboratory procedures and training are in place for personnel working with the animals or their specimens. Unlike the typical researcher, the veterinary diagnostic laboratory generally has to be equipped to safely process and work with a wide range of potential hazards where the communication of pertinent information from the researcher to the diagnostic laboratory regarding the identity of the potential hazard is paramount. Diagnostic laboratory design, safety equipment, personal protective equipment, laboratory procedures, occupational health program and personnel training must be sufficient to address hazards based on a risk assessment performed in conjunction with safety professionals. This article will summarize safety considerations with the various areas of concern in the operation of a diagnostic laboratory for research animal specimens.


Assuntos
Experimentação Animal/normas , Saúde Ocupacional/normas , Animais , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA