Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cytometry A ; 93(9): 952-958, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29659138

RESUMO

Airway fibrosis is a prominent feature of asthma, contributing to the detrimental consequences of the disease. Fibrosis in the airway is the result of collagen deposition in the reticular lamina layer of the subepithelial tissue. Myofibroblasts are the leading cell type involved with this collagen deposition. Established methods of collagen deposition quantification present various issues, most importantly their inability to quantify current collagen biosynthesis occurring in airway myofibroblasts. Here, a novel method to quantify myofibroblast collagen expression in asthmatic lungs is described. Single cell suspensions of lungs harvested from C57BL/6 mice in a standard house dust mite model of asthma were employed to establish a flow cytometric method and compare collagen production in asthmatic and non-asthmatic lungs. Cells found to be CD45- αSMA+ , indicative of myofibroblasts, were gated, and median fluorescence intensity of the anti-collagen-I antibody labeling the cells was calculated. Lung myofibroblasts with no, medium, or high levels of collagen-I expression were distinguished. In asthmatic animals, collagen-I levels were increased in both medium and high expressers, and the number of myofibroblasts with high collagen-I content was elevated. Our findings determined that quantification of collagen-I deposition in myofibroblastic lung cells by flow cytometry is feasible in mouse models of asthma and indicative of increased collagen-I expression by asthmatic myofibroblasts. © 2018 International Society for Advancement of Cytometry.


Assuntos
Asma/patologia , Pulmão/patologia , Fibrose Pulmonar/patologia , Animais , Asma/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Feminino , Fibroblastos/patologia , Citometria de Fluxo/métodos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
2.
JCI Insight ; 5(2)2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-31996482

RESUMO

Inducible nitric oxide synthase (iNOS) and arginase-2 (ARG2) share a common substrate, arginine. Higher expression of iNOS and exhaled NO are linked to airway inflammation in patients. iNOS deletion in animal models suggests that eosinophilic inflammation is regulated by arginine metabolism. Moreover, ARG2 is a regulator of Th2 response, as shown by the development of severe eosinophilic inflammation in ARG2-/- mice. However, potential synergistic roles of iNOS and ARG2 in asthma have not been explored. Here, we hypothesized that arginine metabolic fate via iNOS and ARG2 may govern airway inflammation. In an asthma cohort, ARG2 variant genotypes were associated with arginase activity. ARG2 variants with lower arginase activity, combined with levels of exhaled NO, identified a severe asthma phenotype. Airway inflammation was present in WT, ARG2-/-, iNOS-/-, and ARG2-/-/iNOS-/- mice but was greatest in ARG2-/-. Eosinophilic and neutrophilic infiltration in the ARG2-/- mice was abrogated in ARG2-/-/iNOS-/- animals. Similarly, angiogenic airway remodeling was greatest in ARG2-/- mice. Cytokines driving inflammation and remodeling were highest in lungs of asthmatic ARG2-/- mice and lowest in the iNOS-/-. ARG2 metabolism of arginine suppresses inflammation, while iNOS metabolism promotes airway inflammation, supporting a central role for arginine metabolic control of inflammation.


Assuntos
Arginase/metabolismo , Arginina/metabolismo , Inflamação/metabolismo , Pulmão/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Adulto , Animais , Arginase/genética , Asma/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Genótipo , Humanos , Inflamação/imunologia , Inflamação/patologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA