RESUMO
OBJECTIVE: Chronic obstructive pulmonary disease (COPD) is a major cause of global illness and death, most commonly caused by cigarette smoke. The mechanisms of pathogenesis remain poorly understood, limiting the development of effective therapies. The gastrointestinal microbiome has been implicated in chronic lung diseases via the gut-lung axis, but its role is unclear. DESIGN: Using an in vivo mouse model of cigarette smoke (CS)-induced COPD and faecal microbial transfer (FMT), we characterised the faecal microbiota using metagenomics, proteomics and metabolomics. Findings were correlated with airway and systemic inflammation, lung and gut histopathology and lung function. Complex carbohydrates were assessed in mice using a high resistant starch diet, and in 16 patients with COPD using a randomised, double-blind, placebo-controlled pilot study of inulin supplementation. RESULTS: FMT alleviated hallmark features of COPD (inflammation, alveolar destruction, impaired lung function), gastrointestinal pathology and systemic immune changes. Protective effects were additive to smoking cessation, and transfer of CS-associated microbiota after antibiotic-induced microbiome depletion was sufficient to increase lung inflammation while suppressing colonic immunity in the absence of CS exposure. Disease features correlated with the relative abundance of Muribaculaceae, Desulfovibrionaceae and Lachnospiraceae family members. Proteomics and metabolomics identified downregulation of glucose and starch metabolism in CS-associated microbiota, and supplementation of mice or human patients with complex carbohydrates improved disease outcomes. CONCLUSION: The gut microbiome contributes to COPD pathogenesis and can be targeted therapeutically.
Assuntos
Pneumonia , Doença Pulmonar Obstrutiva Crônica , Humanos , Camundongos , Animais , Doença Pulmonar Obstrutiva Crônica/etiologia , Pulmão/metabolismo , Pulmão/patologia , Pneumonia/etiologia , Inflamação/metabolismo , Carboidratos/farmacologiaRESUMO
BACKGROUND: Asthma and chronic obstructive pulmonary disease (COPD) are common chronic respiratory diseases, and some patients have overlapping disease features, termed asthma-COPD overlap (ACO). Patients characterized with ACO have increased disease severity; however, the mechanisms driving this have not been widely studied. OBJECTIVES: This study sought to characterize the phenotypic and transcriptomic features of experimental ACO in mice induced by chronic house dust mite antigen and cigarette smoke exposure. METHODS: Female BALB/c mice were chronically exposed to house dust mite antigen for 11 weeks to induce experimental asthma, cigarette smoke for 8 weeks to induce experimental COPD, or both concurrently to induce experimental ACO. Lung inflammation, structural changes, and lung function were assessed. RNA-sequencing was performed on separated airway and parenchyma lung tissues to assess transcriptional changes. Validation of a novel upstream driver SPI1 in experimental ACO was assessed using the pharmacological SPI1 inhibitor, DB2313. RESULTS: Experimental ACO recapitulated features of both asthma and COPD, with mixed pulmonary eosinophilic/neutrophilic inflammation, small airway collagen deposition, and increased airway hyperresponsiveness. Transcriptomic analysis identified common and distinct dysregulated gene clusters in airway and parenchyma samples in experimental asthma, COPD, and ACO. Upstream driver analysis revealed increased expression of the transcription factor Spi1. Pharmacological inhibition of SPI1 using DB2313, reduced airway remodeling and airway hyperresponsiveness in experimental ACO. CONCLUSIONS: A new experimental model of ACO featuring chronic dual exposures to house dust mite and cigarette smoke mimics key disease features observed in patients with ACO and revealed novel disease mechanisms, including upregulation of SPI1, that are amenable to therapy.
Assuntos
Asma , Eosinofilia , Doença Pulmonar Obstrutiva Crônica , Hipersensibilidade Respiratória , Animais , Feminino , Camundongos , RNA , Fatores de Transcrição , TranscriptomaRESUMO
The prevalence of chronic immune and metabolic disorders is increasing rapidly. In particular, inflammatory bowel diseases, obesity, diabetes, asthma and chronic obstructive pulmonary disease have become major healthcare and economic burdens worldwide. Recent advances in microbiome research have led to significant discoveries of associative links between alterations in the microbiome and health, as well as these chronic supposedly noncommunicable, immune/metabolic disorders. Importantly, the interplay between diet, microbiome and the mucous barrier in these diseases has gained significant attention. Diet modulates the mucous barrier via alterations in gut microbiota, resulting in either disease onset/exacerbation due to a "poor" diet or protection against disease with a "healthy" diet. In addition, many mucosa-associated disorders possess a specific gut microbiome fingerprint associated with the composition of the mucous barrier, which is further influenced by host-microbiome and inter-microbial interactions, dietary choices, microbe immigration and antimicrobials. Our review focuses on the interactions of diet (macronutrients and micronutrients), gut microbiota and mucous barriers (gastrointestinal and respiratory tract) and their importance in the onset and/or progression of major immune/metabolic disorders. We also highlight the key mechanisms that could be targeted therapeutically to prevent and/or treat these disorders.
Assuntos
Microbioma Gastrointestinal , Doenças do Sistema Imunitário , Microbiota , Dieta , Trato Gastrointestinal , HumanosRESUMO
The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome, is one of the most well-characterized inflammasomes, activated by pathogen-associated molecular patterns and damage-associated molecular patterns, including from commensal or pathogenic bacterial and viral infections. The NLRP3 inflammasome promotes inflammatory cell recruitment and regulates immune responses in tissues such as the gastrointestinal tract and the lung, and is involved in many diseases that affect the gut and lung. Recently, the microbiome in the gut and the lung, and the crosstalk between these organs (gut-lung axis), has been identified as a potential mechanism that may influence disease in a bidirectional manner. In this review, we focus on themes presented in this area at the 2019 World Congress on Inflammation. We discuss recent evidence on how the microbiome can affect NLRP3 inflammasome responses in the gut and lung, the role of this inflammasome in regulating gut and lung inflammation in disease, and its potential role in the gut-lung axis. We highlight the exponential increase in our understanding of the NLRP3 inflammasome due to the synthesis of the NLRP3 inflammasome inhibitor, MCC950, and propose future studies that may further elucidate the roles of the NLRP3 inflammasome in gut and lung diseases.