Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 40(Database issue): D1202-10, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22140109

RESUMO

The Arabidopsis Information Resource (TAIR, http://arabidopsis.org) is a genome database for Arabidopsis thaliana, an important reference organism for many fundamental aspects of biology as well as basic and applied plant biology research. TAIR serves as a central access point for Arabidopsis data, annotates gene function and expression patterns using controlled vocabulary terms, and maintains and updates the A. thaliana genome assembly and annotation. TAIR also provides researchers with an extensive set of visualization and analysis tools. Recent developments include several new genome releases (TAIR8, TAIR9 and TAIR10) in which the A. thaliana assembly was updated, pseudogenes and transposon genes were re-annotated, and new data from proteomics and next generation transcriptome sequencing were incorporated into gene models and splice variants. Other highlights include progress on functional annotation of the genome and the release of several new tools including Textpresso for Arabidopsis which provides the capability to carry out full text searches on a large body of research literature.


Assuntos
Arabidopsis/genética , Bases de Dados Genéticas , Genes de Plantas , Anotação de Sequência Molecular , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Genoma de Planta , Software
2.
Nature ; 434(7032): 509-14, 2005 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-15791256

RESUMO

Vascular plants evolved in the Middle to Late Silurian period, about 420 million years ago. The fossil record indicates that these primitive plants had branched stems with sporangia but no leaves. Leaf-like lateral outgrowths subsequently evolved on at least two independent occasions. In extant plants, these events are represented by microphyllous leaves in lycophytes (clubmosses, spikemosses and quillworts) and megaphyllous leaves in euphyllophytes (ferns, gymnosperms and angiosperms). Our current understanding of how leaves develop is restricted to processes that operate during megaphyll formation. Because microphylls and megaphylls evolved independently, different mechanisms might be required for leaf formation. Here we show that this is not so. Gene expression data from a microphyllous lycophyte, phylogenetic analyses, and a cross-species complementation experiment all show that a common developmental mechanism can underpin both microphyll and megaphyll formation. We propose that this mechanism might have operated originally in the context of primitive plant apices to facilitate bifurcation. Recruitment of this pathway to form leaves occurred independently and in parallel in different plant lineages.


Assuntos
Evolução Biológica , Modelos Biológicos , Folhas de Planta/crescimento & desenvolvimento , Antirrhinum/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fósseis , Dosagem de Genes , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Teste de Complementação Genética , Meristema/crescimento & desenvolvimento , Dados de Sequência Molecular , Mutação/genética , Filogenia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Ligação Proteica , RNA de Plantas/análise , RNA de Plantas/genética , Fatores de Transcrição/genética , Zea mays/genética
3.
Plant Physiol ; 138(3): 1396-408, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15980185

RESUMO

In higher plants, determinate leaf primordia arise in regular patterns on the flanks of the indeterminate shoot apical meristem (SAM). The acquisition of leaf form is then a gradual process, involving the specification and growth of distinct domains within the three leaf axes. The recessive corkscrew1 (cks1) mutation of maize (Zea mays) disrupts both leaf initiation patterns in the SAM and domain specification within the mediolateral and proximodistal leaf axes. Specifically, cks1 mutant leaves exhibit multiple midribs and leaf sheath tissue differentiates in the blade domain. Such perturbations are a common feature of maize mutants that ectopically accumulate KNOTTED1-like homeobox (KNOX) proteins in leaf tissue. Consistent with this observation, at least two knox genes are ectopically expressed in cks1 mutant leaves. However, ectopic KNOX proteins cannot be detected. We therefore propose that CKS1 primarily functions within the SAM to establish boundaries between meristematic and leaf zones. Loss of gene function disrupts boundary formation, impacts phyllotactic patterns, and leads to aspects of indeterminate growth within leaf primordia. Because these perturbations arise independently of ectopic KNOX activity, the cks1 mutation defines a novel component of the developmental machinery that facilitates leaf-versus-shoot development in maize.


Assuntos
Proteínas de Plantas/genética , Brotos de Planta/fisiologia , Zea mays/genética , Sequência de Bases , Primers do DNA , Proteínas de Homeodomínio/genética , Meristema/genética , Mutagênese , Fenótipo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Plântula/genética , Plântula/crescimento & desenvolvimento , Transcrição Gênica , Zea mays/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA