Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 163(5): 1204-1213, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26582133

RESUMO

Duchenne muscular dystrophy (DMD), caused by mutations at the dystrophin gene, is the most common form of muscular dystrophy. There is no cure for DMD and current therapeutic approaches to restore dystrophin expression are only partially effective. The absence of dystrophin in muscle results in dysregulation of signaling pathways, which could be targets for disease therapy and drug discovery. Previously, we identified two exceptional Golden Retriever muscular dystrophy (GRMD) dogs that are mildly affected, have functional muscle, and normal lifespan despite the complete absence of dystrophin. Now, our data on linkage, whole-genome sequencing, and transcriptome analyses of these dogs compared to severely affected GRMD and control animals reveals that increased expression of Jagged1 gene, a known regulator of the Notch signaling pathway, is a hallmark of the mild phenotype. Functional analyses demonstrate that Jagged1 overexpression ameliorates the dystrophic phenotype, suggesting that Jagged1 may represent a target for DMD therapy in a dystrophin-independent manner. PAPERCLIP.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/genética , Distrofia Muscular de Duchenne/genética , Animais , Proliferação de Células , Doenças do Cão/genética , Cães , Distrofina/deficiência , Distrofina/genética , Feminino , Estudo de Associação Genômica Ampla , Proteína Jagged-1 , Masculino , Camundongos , Distrofia Muscular Animal/genética , Linhagem , Penetrância , Proteínas Serrate-Jagged , Transcriptoma , Peixe-Zebra , Proteínas de Peixe-Zebra
2.
FASEB J ; 37(10): e23198, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37742307

RESUMO

DOCK (dedicator of cytokinesis) is an 11-member family of typical guanine nucleotide exchange factors (GEFs) expressed in the brain, spinal cord, and skeletal muscle. Several DOCK proteins have been implicated in maintaining several myogenic processes such as fusion. We previously identified DOCK3 as being strongly upregulated in Duchenne muscular dystrophy (DMD), specifically in the skeletal muscles of DMD patients and dystrophic mice. Dock3 ubiquitous KO mice on the dystrophin-deficient background exacerbated skeletal muscle and cardiac phenotypes. We generated Dock3 conditional skeletal muscle knockout mice (Dock3 mKO) to characterize the role of DOCK3 protein exclusively in the adult muscle lineage. Dock3 mKO mice presented with significant hyperglycemia and increased fat mass, indicating a metabolic role in the maintenance of skeletal muscle health. Dock3 mKO mice had impaired muscle architecture, reduced locomotor activity, impaired myofiber regeneration, and metabolic dysfunction. We identified a novel DOCK3 interaction with SORBS1 through the C-terminal domain of DOCK3 that may account for its metabolic dysregulation. Together, these findings demonstrate an essential role for DOCK3 in skeletal muscle independent of DOCK3 function in neuronal lineages.


Assuntos
Metabolismo dos Carboidratos , Distrofia Muscular de Duchenne , Humanos , Adulto , Animais , Camundongos , Músculo Esquelético , Encéfalo , Camundongos Knockout , Glucose , Proteínas do Tecido Nervoso , Fatores de Troca do Nucleotídeo Guanina/genética
3.
Circ Res ; 131(9): 731-747, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36169218

RESUMO

BACKGROUND: SH2B3 (SH2B adaptor protein 3) is an adaptor protein that negatively regulates cytokine signaling and cell proliferation. A common missense single nucleotide polymorphism in SH2B3 (rs3184504) results in substitution of tryptophan (Trp) for arginine (Arg) at amino acid 262 and is a top association signal for hypertension in human genome-wide association studies. Whether this variant is causal for hypertension, and if so, the mechanism by which it impacts pathogenesis is unknown. METHODS: We used CRISPR-Cas9 technology to create mice homozygous for the major (Arg/Arg) and minor (Trp/Trp) alleles of this SH2B3 polymorphism. Mice underwent angiotensin II (Ang II) infusion to evaluate differences in blood pressure (BP) elevation and end-organ damage including albuminuria and renal fibrosis. Cytokine production and Stat4 phosphorylation was also assessed in Arg/Arg and Trp/Trp T cells. RESULTS: Trp/Trp mice exhibit 10 mmHg higher systolic BP during chronic Ang II infusion compared to Arg/Arg controls. Renal injury and perivascular fibrosis are exacerbated in Trp/Trp mice compared to Arg/Arg controls following Ang II infusion. Renal and ex vivo stimulated splenic CD8+ T cells from Ang II-infused Trp/Trp mice produce significantly more interferon gamma (IFNg) compared to Arg/Arg controls. Interleukin-12 (IL-12)-induced IFNg production is greater in Trp/Trp compared to Arg/Arg CD8+ T cells. In addition, IL-12 enhances Stat4 phosphorylation to a greater degree in Trp/Trp compared to Arg/Arg CD8+ T cells, suggesting that Trp-encoding SH2B3 exhibits less negative regulation of IL-12 signaling to promote IFNg production. Finally, we demonstrated that a multi-SNP model genetically predicting increased SH2B3 expression in lymphocytes is inversely associated with hypertension and hypertensive chronic kidney disease in humans.. CONCLUSIONS: Taken together, these results suggest that the Trp encoding allele of rs3184504 is causal for BP elevation and renal dysfunction, in part through loss of SH2B3-mediated repression of T cell IL-12 signaling leading to enhanced IFNg production.


Assuntos
Hipertensão Renal , Hipertensão , Proteínas Adaptadoras de Transdução de Sinal , Angiotensina II/metabolismo , Angiotensina II/toxicidade , Animais , Arginina/efeitos adversos , Arginina/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Fibrose , Estudo de Associação Genômica Ampla , Humanos , Hipertensão/metabolismo , Hipertensão Renal/metabolismo , Interferon gama/metabolismo , Interleucina-12/efeitos adversos , Interleucina-12/metabolismo , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polimorfismo de Nucleotídeo Único , Triptofano
4.
Int J Mol Sci ; 25(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38791164

RESUMO

Chronic kidney disease (CKD) is associated with significant reductions in lean body mass and in the mass of various tissues, including skeletal muscle, which causes fatigue and contributes to high mortality rates. In CKD, the cellular protein turnover is imbalanced, with protein degradation outweighing protein synthesis, leading to a loss of protein and cell mass, which impairs tissue function. As CKD itself, skeletal muscle wasting, or sarcopenia, can have various origins and causes, and both CKD and sarcopenia share common risk factors, such as diabetes, obesity, and age. While these pathologies together with reduced physical performance and malnutrition contribute to muscle loss, they cannot explain all features of CKD-associated sarcopenia. Metabolic acidosis, systemic inflammation, insulin resistance and the accumulation of uremic toxins have been identified as additional factors that occur in CKD and that can contribute to sarcopenia. Here, we discuss the elevation of systemic phosphate levels, also called hyperphosphatemia, and the imbalance in the endocrine regulators of phosphate metabolism as another CKD-associated pathology that can directly and indirectly harm skeletal muscle tissue. To identify causes, affected cell types, and the mechanisms of sarcopenia and thereby novel targets for therapeutic interventions, it is important to first characterize the precise pathologic changes on molecular, cellular, and histologic levels, and to do so in CKD patients as well as in animal models of CKD, which we describe here in detail. We also discuss the currently known pathomechanisms and therapeutic approaches of CKD-associated sarcopenia, as well as the effects of hyperphosphatemia and the novel drug targets it could provide to protect skeletal muscle in CKD.


Assuntos
Músculo Esquelético , Insuficiência Renal Crônica , Sarcopenia , Humanos , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/etiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Animais , Sarcopenia/metabolismo , Sarcopenia/patologia , Sarcopenia/etiologia
5.
Circ Res ; 128(7): 908-933, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793336

RESUMO

Elevated cardiovascular risk including stroke, heart failure, and heart attack is present even after normalization of blood pressure in patients with hypertension. Underlying immune cell activation is a likely culprit. Although immune cells are important for protection against invading pathogens, their chronic overactivation may lead to tissue damage and high blood pressure. Triggers that may initiate immune activation include viral infections, autoimmunity, and lifestyle factors such as excess dietary salt. These conditions activate the immune system either directly or through their impact on the gut microbiome, which ultimately produces chronic inflammation and hypertension. T cells are central to the immune responses contributing to hypertension. They are activated in part by binding specific antigens that are presented in major histocompatibility complex molecules on professional antigen-presenting cells, and they generate repertoires of rearranged T-cell receptors. Activated T cells infiltrate tissues and produce cytokines including interleukin 17A, which promote renal and vascular dysfunction and end-organ damage leading to hypertension. In this comprehensive review, we highlight environmental, genetic, and microbial associated mechanisms contributing to both innate and adaptive immune cell activation leading to hypertension. Targeting the underlying chronic immune cell activation in hypertension has the potential to mitigate the excess cardiovascular risk associated with this common and deadly disease.


Assuntos
Hipertensão/imunologia , Imunidade Celular/fisiologia , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Anti-Hipertensivos/uso terapêutico , Linfócitos B/imunologia , Proteínas do Sistema Complemento/imunologia , Citocinas/imunologia , Células Dendríticas/imunologia , Resistência a Medicamentos , Feminino , Microbioma Gastrointestinal/imunologia , Fatores de Risco de Doenças Cardíacas , Interações entre Hospedeiro e Microrganismos , Humanos , Hipertensão/tratamento farmacológico , Fenômenos do Sistema Imunitário , Imunidade Inata , Inflamassomos/imunologia , Inflamação/genética , Inflamação/imunologia , Macrófagos/imunologia , Masculino , Monócitos/imunologia , Fatores Sexuais , Cloreto de Sódio na Dieta/efeitos adversos , Linfócitos T/metabolismo , Linfócitos T Reguladores/imunologia , Viroses/imunologia
6.
Neuroradiology ; 65(2): 287-295, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36278979

RESUMO

PURPOSE: Covert brain infarctions (CBIs) and cerebral microbleeds (CMBs) represent subclinical sequelae of ischemic and hemorrhagic cerebral small vessel disease, respectively. In addition to thromboembolic stroke, carotid atherosclerosis has been associated with downstream vascular brain injury, including inflammation and small vessel disease. The specific plaque features responsible for this are unknown. We aimed to determine the association of specific vulnerable carotid plaque features to CBIs and CMBs to better understand the relation of large and small vessel disease in a single-center retrospective observational study. METHODS: Intraplaque hemorrhage (IPH) and plaque ulceration were recorded on carotid MRA and total, cortical, and lacunar CBIs and CMBs were recorded on brain MR in 349 patients (698 carotid arteries). Multivariable Poisson regression was performed to relate plaque features to CBIs and CMBs. Within-subject analysis in those with unilateral IPH and ulceration was performed with Poisson regression. RESULTS: Both IPH and plaque ulceration were associated with total CBI (prevalence ratios (PR) 3.33, 95% CI: 2.16-5.15 and 1.91, 95% CI: 1.21-3.00, respectively), after adjusting for stenosis, demographic, and vascular risk factors. In subjects with unilateral IPH, PR was 2.83, 95% CI: 1.76-4.55, for CBI in the ipsilateral hemisphere after adjusting for stenosis. Among those with unilateral ulceration, PR was 1.82, 95% CI: 1.18-2.81, for total CBI ipsilateral to ulceration after adjusting for stenosis. No statistically significant association was seen with CMBs. CONCLUSION: Both IPH and plaque ulceration are associated with total, cortical, and lacunar type CBIs but not CMBs suggesting that advanced atherosclerosis contributes predominantly to ischemic markers of subclinical vascular injury.


Assuntos
Estenose das Carótidas , Placa Aterosclerótica , Humanos , Estenose das Carótidas/complicações , Estenose das Carótidas/diagnóstico por imagem , Constrição Patológica/complicações , Imageamento por Ressonância Magnética , Artérias Carótidas , Placa Aterosclerótica/complicações , Placa Aterosclerótica/diagnóstico por imagem , Fatores de Risco , Infarto Encefálico , Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/complicações
7.
Stereotact Funct Neurosurg ; 101(5): 314-318, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37690446

RESUMO

INTRODUCTION: Magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy is an incision-less ablative technique used to treat medically refractory tremor. Although intracerebral hemorrhage has not been reported with MRgFUS thalamotomy for the treatment of movement disorders, clinicians commonly interrupt active blood thinning medications prior to the procedure or offer gamma knife radiosurgery instead. However, MRgFUS uses focal thermoablation, and bleeding risk is likely minimal. This study aimed to evaluate the safety of MRgFUS thalamotomy in patients with essential tremor (ET) and tremor-dominant Parkinson's disease (PD) without interrupting anticoagulant or antiplatelet therapies. METHODS: This was a single-center retrospective case series of all patients with ET or PD undergoing MRgFUS from February 2019 through December 2022 (n = 96). Demographic variables and medications taken at the time of surgery were obtained. Our primary outcome was the type and frequency of hemorrhagic complications noted on the operative report or postoperative imaging. RESULTS: The mean age of patients was 74.2 years, and 26% were female. Forty patients were taking ≥1 antiplatelet or anticoagulant medications. No patient actively taking anticoagulant or antiplatelet therapies had a hemorrhagic complication during or <48 h after the procedure. CONCLUSION: The frequency of intra- or postoperative complications from MRgFUS was not higher in patients actively taking anticoagulant or antiplatelet therapies relative to those who were not. Our findings suggest that MRgFUS thalamotomy does not necessitate interrupting anticoagulant or antiplatelet therapies. However, given the limited number of patients actively taking these therapies in our cohort (n = 40), additional testing in large, prospective studies should be conducted to further establish safety.


Assuntos
Tremor Essencial , Doença de Parkinson , Humanos , Feminino , Idoso , Masculino , Tremor , Estudos Prospectivos , Estudos Retrospectivos , Tálamo/diagnóstico por imagem , Tálamo/cirurgia , Tremor Essencial/diagnóstico por imagem , Tremor Essencial/cirurgia , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/cirurgia , Imageamento por Ressonância Magnética/métodos , Anticoagulantes/efeitos adversos , Espectroscopia de Ressonância Magnética , Resultado do Tratamento
8.
Hum Mutat ; 43(9): 1149-1161, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35544951

RESUMO

The Dedicator of Cytokinesis (DOCK) family (DOCK1-11) of genes are essential mediators of cellular migration, growth, and fusion in a variety of cell types and tissues. Recent advances in whole-genome sequencing of patients with undiagnosed genetic disorders have identified several rare pathogenic variants in DOCK genes. We conducted a systematic review and performed a patient database and literature search of reported DOCK pathogenic variants that have been identified in association with clinical pathologies such as global developmental delay, immune cell dysfunction, muscle hypotonia, and muscle ataxia among other categories. We then categorized these pathogenic DOCK variants and their associated clinical phenotypes under several unique categories: developmental, cardiovascular, metabolic, cognitive, or neuromuscular. Our systematic review of DOCK variants aims to identify and analyze potential DOCK-regulated networks associated with neuromuscular diseases and other disease pathologies, which may identify novel therapeutic strategies and targets. This systematic analysis and categorization of human-associated pathologies with DOCK pathogenic variants is the first report to the best of our knowledge for a unique class in this understudied gene family that has important implications in furthering personalized genomic medicine, clinical diagnoses, and improve targeted therapeutic outcomes across many clinical pathologies.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Deficiência Intelectual , Ataxia , Genômica , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Deficiência Intelectual/genética , Família Multigênica , Hipotonia Muscular/genética , Fatores de Transcrição
9.
Hum Mol Genet ; 29(17): 2855-2871, 2020 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-32766788

RESUMO

DOCK3 is a member of the DOCK family of guanine nucleotide exchange factors that regulate cell migration, fusion and viability. Previously, we identified a dysregulated miR-486/DOCK3 signaling cascade in dystrophin-deficient muscle, which resulted in the overexpression of DOCK3; however, little is known about the role of DOCK3 in muscle. Here, we characterize the functional role of DOCK3 in normal and dystrophic skeletal muscle. Utilizing Dock3 global knockout (Dock3 KO) mice, we found that the haploinsufficiency of Dock3 in Duchenne muscular dystrophy mice improved dystrophic muscle pathologies; however, complete loss of Dock3 worsened muscle function. Adult Dock3 KO mice have impaired muscle function and Dock3 KO myoblasts are defective for myogenic differentiation. Transcriptomic analyses of Dock3 KO muscles reveal a decrease in myogenic factors and pathways involved in muscle differentiation. These studies identify DOCK3 as a novel modulator of muscle health and may yield therapeutic targets for treating dystrophic muscle symptoms.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Desenvolvimento Muscular/genética , Músculo Esquelético/crescimento & desenvolvimento , Distrofia Muscular de Duchenne/genética , Proteínas do Tecido Nervoso/genética , Animais , Diferenciação Celular/genética , Movimento Celular/genética , Sobrevivência Celular/genética , Humanos , Camundongos , Camundongos Knockout , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Mioblastos/metabolismo , Transcriptoma/genética
10.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35886863

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked recessive disease characterized by skeletal muscle instability, progressive muscle wasting, and fibrosis. A major driver of DMD pathology stems from aberrant upregulation of transforming growth factor ß (TGFß) signaling. In this report, we investigated the major transducers of TGFß signaling, i.e., receptor Smads (R-Smads), in DMD patient skeletal muscle and observed a 48-fold increase in Smad8 mRNA. Smad1, Smad2, Smad3, and Smad5 mRNA were only minimally increased. A similar pattern was observed in the muscle from the mdx5cv mouse. Western blot analysis showed upregulation of phosphorylated Smad1, Smad5, and Smad8 compared to total Smad indicating activation of this pathway. In parallel, we observed a profound diminishment of muscle-enriched microRNAs (myomiRs): miR-1, miR-133a, and miR-133b. The pattern of Smad8 induction and myomiR suppression was recapitulated in C2C12 muscle cells after stimulation with bone morphogenetic protein 4 (BMP4), a signaling factor that we found upregulated in DMD muscle. Silencing Smad8 in C2C12 myoblasts derepressed myomiRs and promoted myoblast differentiation; there was also a concomitant upregulation of myogenic regulatory factors (myogenin and myocyte enhancer factor 2D) and suppression of a pro-inflammatory cytokine (interleukin-6). Our data suggest that Smad8 is a negative regulator of miR-1, miR-133a, and miR-133b in muscle cells and that the BMP4-Smad8 axis is a driver of dystrophic pathology in DMD.


Assuntos
MicroRNAs , Distrofia Muscular de Duchenne , Proteína Smad8 , Animais , Camundongos , Camundongos Endogâmicos mdx , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , RNA Mensageiro/metabolismo , Proteína Smad8/genética , Proteína Smad8/metabolismo , Fator de Crescimento Transformador beta/metabolismo
11.
J Environ Eng (New York) ; 149(1): 1-12, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37593338

RESUMO

Four chloraminated drinking water distribution systems (CDWDSs) required to maintain numeric versus "detectable" residuals were spatially and temporally sampled for water quality and associated trihalomethane (THM) and haloacetic acid (HAA) formation. Monochloramine decreased from entry point (EP) to maximum residence time (MRT) samples while THMs and HAAs initially increased and then stabilized or slightly decreased. Subsequently, EP and MRT samples were used in laboratory-held studies to further evaluate disinfectant residual stability, chloramine speciation, and nitrification occurrence. MRT water exhibited a faster monochloramine concentration decline compared to EP water, indicating a decreasing disinfectant residual stability from increasing water age through distribution. Using a simple technique based on published inorganic chloramine chemistry, samples were also investigated for nondisinfectant positive interference (NDPI) on total chlorine measurements. NDPI concentrations represented up to 100% of the total chlorine concentration when total chlorine concentrations decreased to 0.05 mg-Cl2/L, indicating little to no effective disinfectant residual remained.

12.
Environ Monit Assess ; 194(8): 541, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768630

RESUMO

Recent studies have reported on the widespread abundance of atmospheric microplastics (At-MPs) and atmospheric anthropogenic microfibres (At-AMFs) in urban and remote locations. This study sought to test whether there were differences in the quantity of deposited At-AMFs collected when comparing three different surface sampler areas (small: 0.0113 m2 (Φ = 120 mm), medium: 0.0254 m2 (Φ = 180 mm) and large: 0.0346 m2 (Φ = 210 mm)). The analysis revealed no statistically significant variation in the number of At-AMFs recorded, when data was presented in At-AMFs per m2 day-1. However, our findings indicate that for any given individual sampling event, the amount of deposition can range by ∼ 150 to 200 At-AMFs m2 d-1 even if samplers are kept relatively close together. To account for this, we would recommend that future studies collect data in duplicate or triplicate. Our results suggest that data can be compared across different sites and geographical regions-at least if comparing the overall mean and standard deviation of all samples collected. These findings are important because currently there is no standard sampler size for passive collection of At-AMFs and At-MPs.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Microplásticos , Plásticos/análise
13.
Am J Physiol Cell Physiol ; 321(2): C230-C246, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33979214

RESUMO

The MDX mouse is an animal model of Duchenne muscular dystrophy, a human disease marked by an absence of the cytoskeletal protein, dystrophin. We hypothesized that 1) dystrophin serves a complex mechanical role in skeletal muscles by contributing to passive compliance, viscoelastic properties, and contractile force production and 2) age is a modulator of passive mechanics of skeletal muscles of the MDX mouse. Using an in vitro biaxial mechanical testing apparatus, we measured passive length-tension relationships in the muscle fiber direction as well as transverse to the fibers, viscoelastic stress-relaxation curves, and isometric contractile properties. To avoid confounding secondary effects of muscle necrosis, inflammation, and fibrosis, we used very young 3-wk-old mice whose muscles reflected the prefibrotic and prenecrotic state. Compared with controls, 1) muscle extensibility and compliance were greater in both along fiber direction and transverse to fiber direction in MDX mice and 2) the relaxed elastic modulus was greater in dystrophin-deficient diaphragms. Furthermore, isometric contractile muscle stress was reduced in the presence and absence of transverse fiber passive stress. We also examined the effect of age on the diaphragm length-tension relationships and found that diaphragm muscles from 9-mo-old MDX mice were significantly less compliant and less extensible than those of muscles from very young MDX mice. Our data suggest that the age of the MDX mouse is a determinant of the passive mechanics of the diaphragm; in the prefibrotic/prenecrotic stage, muscle extensibility and compliance, as well as viscoelasticity, and muscle contractility are altered by loss of dystrophin.


Assuntos
Distrofina/deficiência , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Animais , Modelos Animais de Doenças , Contração Isométrica/fisiologia , Camundongos Transgênicos , Distrofia Muscular de Duchenne/fisiopatologia
14.
J Biol Chem ; 295(20): 6946-6957, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32265301

RESUMO

The incidence of pancreatic cancer increases with age, suggesting that chronological aging is a significant risk factor for this disease. Fibroblasts are the major nonmalignant cell type in the stroma of human pancreatic ductal adenocarcinoma (PDAC). In this study, we investigated whether the chronological aging of normal human fibroblasts (NHFs), a previously underappreciated area in pancreatic cancer research, influences the progression and therapeutic outcomes of PDAC. Results from experiments with murine xenografts and 2D and 3D co-cultures of NHFs and PDAC cells revealed that older NHFs stimulate proliferation of and confer resistance to radiation therapy of PDAC. MS-based metabolite analysis indicated that older NHFs have significantly increased arachidonic acid 12-lipoxygenase (ALOX12) expression and elevated levels of its mitogenic metabolite, 12-(S)-hydroxy-5,8,10,14-eicosatetraenoic acid (12-(S)-HETE) compared with their younger counterparts. In co-cultures with older rather than with younger NHFs, PDAC cells exhibited increases in mitogen-activated protein kinase signaling and cellular metabolism, as well as a lower oxidation state that correlated with their enhanced proliferation and resistance to radiation therapy. Expression of ALOX12 was found to be significantly lower in PDAC cell lines and tumor biopsies, suggesting that PDAC cells rely on a stromal supply of mitogens for their proliferative needs. Pharmacological (hydroxytyrosol) and molecular (siRNA) interventions of ALOX12 in older NHFs suppressed their ability to stimulate proliferation of PDAC cells. We conclude that chronological aging of NHFs contributes to PDAC progression and that ALOX12 and 12-(S)-HETE may be potential stromal targets for interventions that seek to halt progression and improve therapy outcomes.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Senescência Celular , Ácidos Hidroxieicosatetraenoicos/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/metabolismo , Animais , Araquidonato 12-Lipoxigenase/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Camundongos , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Células Estromais/metabolismo , Células Estromais/patologia
15.
Hum Mol Genet ; 28(14): 2365-2377, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31267131

RESUMO

MEGF10 myopathy is a rare inherited muscle disease that is named after the causative gene, MEGF10. The classic phenotype, early onset myopathy, areflexia, respiratory distress and dysphagia, is severe and immediately life-threatening. There are no disease-modifying therapies. We performed a small molecule screen and follow-up studies to seek a novel therapy. A primary in vitro drug screen assessed cellular proliferation patterns in Megf10-deficient myoblasts. Secondary evaluations were performed on primary screen hits using myoblasts derived from Megf10-/- mice, induced pluripotent stem cell-derived myoblasts from MEGF10 myopathy patients, mutant Drosophila that are deficient in the homologue of MEGF10 (Drpr) and megf10 mutant zebrafish. The screen yielded two promising candidates that are both selective serotonin reuptake inhibitors (SSRIs), sertraline and escitalopram. In depth follow-up analyses demonstrated that sertraline was highly effective in alleviating abnormalities across multiple models of the disease including mouse myoblast, human myoblast, Drosophila and zebrafish models. Sertraline also restored deficiencies of Notch1 in disease models. We conclude that SSRIs show promise as potential therapeutic compounds for MEGF10 myopathy, especially sertraline. The mechanism of action may involve the Notch pathway.


Assuntos
Proteínas de Membrana/genética , Doenças Musculares/tratamento farmacológico , Mioblastos/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Sertralina/uso terapêutico , Animais , Linhagem Celular , Movimento Celular , Proliferação de Células , Citalopram/farmacologia , Citalopram/uso terapêutico , Drosophila/efeitos dos fármacos , Drosophila/genética , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Mutação , Mioblastos/metabolismo , Receptor Notch1/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Sertralina/farmacologia , Transdução de Sinais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
16.
NMR Biomed ; 34(11): e4582, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34296793

RESUMO

Ischemic events related to carotid disease are far more strongly associated with plaque instability than stenosis. 3D high-resolution diffusion-weighted (DW) imaging can provide quantitative diffusion measurements on carotid atherosclerosis and may improve detection of vulnerable intraplaque hemorrhage (IPH). The 3D DW-stack of stars (SOS) sequence was implemented with 3D SOS acquisition combined with DW preparation. After simulation of signals created from 3D DW-SOS, phantom studies were performed. Three healthy subjects and 20 patients with carotid disease were recruited. Apparent diffusion coefficient (ADC) values were statistically analyzed on three subgroups by using a two-group comparison Wilcoxon-Mann-Whitney U test with p values less than 0.05: symptomatic versus asymptomatic; IPH-positive versus IPH-negative; and IPH-positive symptomatic versus asymptomatic plaques to determine the relationship with plaque vulnerability. ADC values calculated by 3D DW-SOS provided values similar to those calculated from other techniques. Mean ADC of symptomatic plaque was significantly lower than asymptomatic plaque (0.68 ± 0.18 vs. 0.98 ± 0.16 x 10-3  mm2 /s, p < 0.001). ADC was also significantly lower in IPH-positive versus IPH-negative plaque (0.68 ± 0.13 vs. 1.04 ± 0.11 x 10-3  mm2 /s, p < 0.001). Additionally, ADC was significantly lower in symptomatic versus asymptomatic IPH-positive plaque (0.57 ± 0.09 vs. 0.75 ± 0.11 x 10-3  mm2 /s, p < 0.001). Our results provide strong evidence that ADC measurements from 3D DW-SOS correlate with the symptomatic status of extracranial internal carotid artery plaque. Further, ADC improved discrimination of symptomatic plaque in IPH. These data suggest that diffusion characteristics may improve detection of destabilized plaque leading to elevated stroke risk.


Assuntos
Estenose das Carótidas/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Hemorragia/diagnóstico por imagem , Imageamento Tridimensional , Simulação por Computador , Humanos , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador
17.
FASEB J ; 34(12): 15946-15960, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33015868

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the global pandemic of coronavirus disease-2019 (COVID-19). SARS-CoV-2 is a zoonotic disease, but little is known about variations in species susceptibility that could identify potential reservoir species, animal models, and the risk to pets, wildlife, and livestock. Certain species, such as domestic cats and tigers, are susceptible to SARS-CoV-2 infection, while other species such as mice and chickens are not. Most animal species, including those in close contact with humans, have unknown susceptibility. Hence, methods to predict the infection risk of animal species are urgently needed. SARS-CoV-2 spike protein binding to angiotensin-converting enzyme 2 (ACE2) is critical for viral cell entry and infection. Here we integrate species differences in susceptibility with multiple in-depth structural analyses to identify key ACE2 amino acid positions including 30, 83, 90, 322, and 354 that distinguish susceptible from resistant species. Using differences in these residues across species, we developed a susceptibility score that predicts an elevated risk of SARS-CoV-2 infection for multiple species including horses and camels. We also demonstrate that SARS-CoV-2 is nearly optimal for binding ACE2 of humans compared to other animals, which may underlie the highly contagious transmissibility of this virus among humans. Taken together, our findings define potential ACE2 and SARS-CoV-2 residues for therapeutic targeting and identification of animal species on which to focus research and protection measures for environmental and public health.


Assuntos
Enzima de Conversão de Angiotensina 2/química , COVID-19/genética , Predisposição Genética para Doença , Receptores Virais/química , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2/genética , Animais , Camelus , Glicosilação , Cavalos , Humanos , Modelos Moleculares , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Virais/genética , SARS-CoV-2 , Alinhamento de Sequência , Especificidade da Espécie
18.
Muscle Nerve ; 63(6): 928-940, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33651408

RESUMO

INTRODUCTION: RNA-binding proteins (RBPs) play an important role in skeletal muscle development and disease by regulating RNA splicing. In myotonic dystrophy type 1 (DM1), the RBP MBNL1 (muscleblind-like) is sequestered by toxic CUG repeats, leading to missplicing of MBNL1 targets. Mounting evidence from the literature has implicated other factors in the pathogenesis of DM1. Herein we sought to evaluate the functional role of the splicing factor hnRNP L in normal and DM1 muscle cells. METHODS: Co-immunoprecipitation assays using hnRNPL and MBNL1 expression constructs and splicing profiling in normal and DM1 muscle cell lines were performed. Zebrafish morpholinos targeting hnrpl and hnrnpl2 were injected into one-cell zebrafish for developmental and muscle analysis. In human myoblasts downregulation of hnRNP L was achieved with shRNAi. Ascochlorin administration to DM1 myoblasts was performed and expression of the CUG repeats, DM1 splicing biomarkers, and hnRNP L expression levels were evaluated. RESULTS: Using DM1 patient myoblast cell lines we observed the formation of abnormal hnRNP L nuclear foci within and outside the expanded CUG repeats, suggesting a role for this factor in DM1 pathology. We showed that the antiviral and antitumorigenic isoprenoid compound ascochlorin increased MBNL1 and hnRNP L expression levels. Drug treatment of DM1 muscle cells with ascochlorin partially rescued missplicing of established early biomarkers of DM1 and improved the defective myotube formation displayed by DM1 muscle cells. DISCUSSION: Together, these studies revealed that hnRNP L can modulate DM1 pathologies and is a potential therapeutic target.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Desenvolvimento Muscular/genética , Mioblastos/metabolismo , Distrofia Miotônica/genética , Adulto , Animais , Linhagem Celular , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mioblastos/patologia , Distrofia Miotônica/metabolismo , Distrofia Miotônica/patologia , Peixe-Zebra
20.
Semin Neurol ; 41(1): 46-53, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33472269

RESUMO

There is an absence of specific evidence or guideline recommendations on blood pressure management for large vessel occlusion stroke patients. Until randomized data are available, the periprocedural blood pressure management of patients undergoing endovascular thrombectomy can be viewed in two phases relative to the achievement of recanalization. In the hyperacute phase, prior to recanalization, hypotension should be avoided to maintain adequate penumbral perfusion. The American Heart Association guidelines should be followed for the upper end of prethrombectomy blood pressure: ≤185/110 mm Hg, unless post-tissue plasminogen activator administration when the goal is <180/105 mm Hg. After successful recanalization (thrombolysis in cerebral infarction [TICI]: 2b-3), we recommend a target of a maximum systolic blood pressure of < 160 mm Hg, while the persistently occluded patients (TICI < 2b) may require more permissive goals up to <180/105 mm Hg. Future research should focus on generating randomized data on optimal blood pressure management both before and after endovascular thrombectomy, to optimize patient outcomes for these divergent clinical scenarios.


Assuntos
Isquemia Encefálica , Procedimentos Endovasculares , AVC Isquêmico , Acidente Vascular Cerebral , Pressão Sanguínea , Isquemia Encefálica/cirurgia , Humanos , Acidente Vascular Cerebral/cirurgia , Trombectomia , Ativador de Plasminogênio Tecidual , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA