Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 25(22)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207762

RESUMO

This work focused on comparing the ability of lecithins with two purity grades regarding their performance in the development of nanoliposomes, as well as their ability to contain and release polar (trans-aconitic acid) and non-polar (quercetin) antioxidant compounds. First, the chemical characterization of both lecithins was carried out through infrared spectroscopy (FTIR), electrospray ionization mass spectrometry (ESI/MS), and modulated differential scanning calorimetry (mDSC). Second, nanoliposomes were prepared by the ethanol injection method and characterized by means of particle size, polydispersity, and zeta potential measurements. Third, the encapsulation efficiency and in vitro release profiles of antioxidants were evaluated. Finally, the antioxidant effect of quercetin and trans aconitic acid in the presence and absence of nanoliposomes was assessed through the oxygen radical absorbance capacity (ORAC) assay. The results showed that, although there are differences in the chemical composition between the two lecithins, these allow the development of nanoliposomes with very similar physicochemical features. Likewise, nanoliposomes elaborated with low purity grade lecithins favored the encapsulation and release of trans-aconitic acid (TAA), while the nanoliposomes made with high purity lecithins favored the encapsulation of quercetin (QCT) and modified its release. Regarding the antioxidant effect, the vehiculization of TAA and QCT in nanoliposomes led to an increase in the antioxidant capability, where QCT showed a sustained effect over time and TAA exhibited a rapidly decaying effect. Likewise, liposomal systems were also found to have a slight antioxidant effect.


Assuntos
Antioxidantes/farmacologia , Lecitinas/química , Lipossomos/química , Nanopartículas/química , Espectrometria de Massas , Espécies Reativas de Oxigênio/química , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Pharmaceuticals (Basel) ; 13(1)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936208

RESUMO

A promising strategy to improve the effectivity of anticancer treatment and decrease its side effects is to modulate drug release by using nanoparticulates (NPs) as carriers. In this study, methotrexate-loaded chitosan-polyanion nanoparticles were produced by polyelectrolyte complexation assisted by high-intensity sonication, using several anionic polymers, such as the sodium and potassium salts of poly(maleic acid-alt-ethylene) and poly(maleic acid-alt-octadecene), here named PAM-2 and PAM-18, respectively. Such NPs were analyzed and characterized according to particle size, polydispersity index, zeta potential and encapsulation efficiency. Likewise, their physical stability was tested at 4 °C and 40 °C in order to evaluate any change in the previously mentioned particle parameters. The in vitro methotrexate release was assessed at a pH of 7.4, which simulated physiological conditions, and the data were fitted to the heuristic models of order one, Higuchi, Peppas-Sahlin and Korsmeyer-Peppas. The results revealed that most of the MTX-chitosan-polyanion NPs have positive zeta potential values, sizes <280 nm and monodisperse populations, except for the NPs formed with PAM-18 polyanions. Further, the NPs showed adequate physical stability, preventing NP-NP aggregation. Likewise, these carriers modified the MTX release by an anomalous mechanism, where the NPs formed with PAM-2 polymer led to a release mechanism controlled by diffusion and relaxation, whereas the NPs formed with PAM-18 led to a mainly diffusion-controlled release mechanism.

3.
Pharmaceuticals (Basel) ; 13(4)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32224877

RESUMO

In the past decade, pharmaceutical nanotechnology has proven to be a promising alternative for improving the physicochemical and biopharmaceutical features for conventional pharmaceutical drug formulations. The goal of this study was to develop, characterize, and evaluate the in vitro and in vivo release of the model drug carbamazepine (CBZ) from two emulsified formulations with different droplet sizes (coarse and nanometric). Briefly, oil-in-water emulsions were developed using (i) Sacha inchi oil, ultrapure water, TweenTM 80, and SpanTM 80 as surfactants, (ii) methyl-paraben and propyl-paraben as preservatives, and (iii) CBZ as a nonpolar model drug. The coarse and nanometric emulsions were prepared by rotor-stator dispersion and ultra-high-pressure homogenization (UHPH), respectively. The in vitro drug release studies were conducted by dialysis, whereas the in vivo drug release was evaluated in New Zealand breed rabbits. The results showed that nanoemulsions were physically more stable than coarse emulsions, and that CBZ had a very low release for in vitro determination (<2%), and a release of 20% in the in vivo study. However, it was found that nanoemulsions could significantly increase drug absorption time from 12 h to 45 min.

4.
Carbohydr Polym ; 243: 116436, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32532389

RESUMO

Methotrexate-loaded phytic acid-chitosan nanoparticles were synthesized by ionic gelation assisted by high-intensity sonication. The nanoparticles were characterized by particle size, polydispersity index, zeta potential (ZP) and encapsulation efficiency. Their physical stability was evaluated at 4 °C and 40 °C, whereas the in-vitro methotrexate release was assessed at pH 7.4. The data were heuristically fit to first-order, Higuchi, Peppas-Sahlin and Korsmeyer-Peppas models of release kinetics. Anticancer activity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay on HT-29 human colon adenocarcinoma cells. Physicochemical analysis showed that the nanoparticles presented positive ZP values, sizes less than <300 nm and low polydispersity, except for systems formed with low amplitude sonication. The nanoparticles exhibited an adequate physical stability and a capability to modify methotrexate release by a non-Fickian mechanism, resulting in a more pronounced cytotoxic effect than the free drug on HT-29 human colon adenocarcinoma cells.


Assuntos
Adenocarcinoma/patologia , Antineoplásicos/farmacologia , Neoplasias do Colo/patologia , Portadores de Fármacos/química , Metotrexato/farmacologia , Nanopartículas/química , Adenocarcinoma/tratamento farmacológico , Quitosana/química , Neoplasias do Colo/tratamento farmacológico , Liberação Controlada de Fármacos , Géis , Células HT29 , Humanos , Ácido Fítico/química
5.
Polymers (Basel) ; 12(5)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443668

RESUMO

This study was focused on synthesizing, characterizing and evaluating the biological potential of Polyelectrolyte Complex Nanoparticles (PECNs) loaded with the antibiotic ampicillin. For this, the PECNs were produced initially by polyelectrolytic complexation (bottom-up method) and subsequently subjected to ultra-high pressure homogenization-UHPH (top-down method). The synthetic polymeric materials corresponding to the sodium salt of poly(maleic acid-alt-octadecene) (PAM-18Na) and the chloride salt of Eudragit E-100 (EuCl) were used, where the order of polyelectrolyte complexation, the polyelectrolyte ratio and the UHPH conditions on the PECNs features were evaluated. Likewise, PECNs were physicochemically characterized through particle size, polydispersity index, zeta potential, pH and encapsulation efficiency, whereas the antimicrobial effect was evaluated by means of the broth microdilution method employing ampicillin sensitive and resistant S. aureus strains. The results showed that the classical method of polyelectrolyte complexation (bottom-up) led to obtain polymeric complexes with large particle size and high polydispersity, where the 1:1 ratio between the titrant and receptor polyelectrolyte was the most critical condition. In contrast, the UHPH technique (top-down method) proved high performance to produce uniform polymeric complexes on the nanometric scale (particle size < 200 nm and PDI < 0.3). Finally, it was found there was a moderate increase in antimicrobial activity when ampicillin was loaded into the PECNs.

6.
Pharmaceutics ; 13(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396760

RESUMO

Colistin is a re-emergent antibiotic peptide used as a last resort in clinical practice to overcome multi-drug resistant (MDR) Gram-negative bacterial infections. Unfortunately, the dissemination of colistin-resistant strains has increased in recent years and is considered a public health problem worldwide. Strategies to reduce resistance to antibiotics such as nanotechnology have been applied successfully. In this work, colistin was characterized physicochemically by surface tension measurements. Subsequently, nanoliposomes coated with highly deacetylated chitosan were prepared with and without colistin. The nanoliposomes were characterized using dynamic light scattering and zeta potential measurements. Both physicochemical parameters fluctuated relatively to the addition of colistin and/or polymer. The antimicrobial activity of formulations increased by four-fold against clinical isolates of susceptible Pseudomona aeruginosa but did not have antimicrobial activity against multidrug-resistant (MDR) bacteria. Interestingly, the free coated nanoliposomes exhibited the same antibacterial activity in both sensitive and MDR strains. Finally, the interaction of colistin with phospholipids was characterized using molecular dynamics (MD) simulations and determined that colistin is weakly associated with micelles constituted by zwitterionic phospholipids.

7.
Diabetes Ther ; 11(6): 1419-1427, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32383100

RESUMO

PURPOSE: The aim of this study is to demonstrate that the total number of days in hospital required for healing of a de novo diabetes-related foot ulcer (DFU) is lower in patients followed up using a telemedicine platform (Télépied Follow-Up group [Group 2]) than in patients followed up using standard care (Standard Follow-Up control group [Group 1]). Patients are assigned to either Group 1 or Group 2 depending on whether their first inclusion visit is during an even or odd week. Patients included in Group 1 are to be followed at spaced intervals during day hospital visits by the investigator assisted by a specialized referral nurse as part of the regular follow-up procedure (dressing changes + ulcer monitoring). Between visits, an independent nurse (IN) provides local care on a daily basis. Patients included in Group 2 have their DFU treated by a referral nurse trained at the diabetic foot unit of the investigating centre, and they are also followed up by an IN under the supervision of a referral nurse. In Group 2, monitoring of lesions is performed weekly by the referral nurse using photos of the DFU with planimetry taken by the IN and sent to the referral nurse via telemedicine software. The referral nurse can, in turn, provide guidance to the IN on the care to be provided and/or decide that a further hospital visit is needed. Both treatment groups are to be followed for 12 months or until complete healing of the ulcer. RESULTS: Recruitment for the study began in March 2017 and ended in May 2019, with the final study visit scheduled for May 2020. CONCLUSION: The aim of the Télépied study is to assess the impact of ambulatory foot ulcer management in diabetics over a 1-year period by a non-specialized IN working under the supervision of a referral nurse via telemedicine follow-up versus standard follow-up by an IN alone. The primary endpoint is the total duration of hospitalization required until full healing of the ulcer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA