Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Helicobacter ; 29(4): e13110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39001634

RESUMO

BACKGROUND: Antimicrobial-resistant Helicobacter pylori (H. pylori) poses a significant public health concern, especially given the limited therapeutic options for azithromycin-resistant strains. Hence, there is a necessity for new studies to reconsider the use of azithromycin, which has diminished in effectiveness against numerous strains. Thus, we aimed to augment azithromycin's anti-Helicobacter properties by combining it with curcumin in different formulations, including curcumin in clove oil, curcumin nano-gold emulsion, and curcumin nanoemulsion. METHODS: The antimicrobial activities of the investigated compounds, both individually and in combination with other anti-Helicobacter drugs, were evaluated. Their antibiofilm and anti-virulence properties were assessed using both phenotypic and genotypic methods, alongside molecular docking studies. Our findings were further validated through mouse protection assays and histopathological analysis. RESULTS: We observed high anti-Helicobacter activities of curcumin, especially curcumin nanoemulsion. A synergistic effect was detected between curcumin nanoemulsion and azithromycin with fraction inhibitory concentration index (FICI) values <0.5. The curcumin nanoemulsion was the most active anti-biofilm and anti-virulence compound among the examined substances. The biofilm-correlated virulence genes (babA and hopQ) and ureA genes were downregulated (fold change <1) post-treatment with curcumin nanoemulsion. On the protein level, the anti-virulence activities of curcumin nanoemulsion were documented based on molecular docking studies. These findings aligned with histopathological scoring of challenge mice, affirming the superior efficacy of curcumin nanoemulsion/azithromycin combination. CONCLUSION: The anti-Helicobacter activities of all curcumin physical forms pose significant challenges due to their higher  minimum inhibitory concentration (MIC) values exceeding the maximum permissible level. However, using curcumin nanoemulsion at sub-MIC levels could enhance the anti-Helicobacter activity of azithromycin and exhibit anti-virulence properties, thereby improving patient outcomes and addressing resistant pathogens. Therefore, more extensive studies are necessary to assess the safety of incorporating curcumin nanoemulsion into H. pylori treatment.


Assuntos
Antibacterianos , Azitromicina , Biofilmes , Curcumina , Infecções por Helicobacter , Simulação de Acoplamento Molecular , Azitromicina/farmacologia , Azitromicina/química , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Camundongos , Biofilmes/efeitos dos fármacos , Curcumina/farmacologia , Curcumina/química , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/genética , Testes de Sensibilidade Microbiana , Sinergismo Farmacológico , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Virulência/efeitos dos fármacos , Feminino
2.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38515285

RESUMO

AIM: During liver transplantation, both hospital-acquired (HA) and community-acquired (CA) intra-abdominal infections (IAIs) are involved causing life-threatening diseases. Therefore, comparative studies of aerobic and facultative anaerobic HA-IAIs and CA-IAIs after liver transplantation surgery are necessary. METHODS AND RESULTS: The species of detected isolates (310) from intra-abdominal fluid were identified and classified into hospital-acquired intra-abdominal infections (HA-IAIs) and community-acquired intra-abdominal infections (CA-IAIs). Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii were the most commonly detected species. The resistant phenotypes were commonly detected among the HA-IAIs; however, the virulent phenotypes were the predominant strains of CA-IAIs. Regrettably, the resistance profiles were shocking, indicating the inefficacy of monotherapy in treating these isolates. Therefore, we confirmed the use of empirical combination therapies of amikacin and meropenem for treating all IAIs (FICI ≤ 0.5). Unfortunately, the high diversity and low clonality of all identified HA and CA-IAIs were announced with D-value in the range of 0.992-1. CONCLUSION: This diversity proves that there are infinite numbers of infection sources inside and outside healthcare centers.


Assuntos
Infecções Comunitárias Adquiridas , Infecção Hospitalar , Infecções Intra-Abdominais , Transplante de Fígado , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Intra-Abdominais/tratamento farmacológico , Transplante de Fígado/efeitos adversos , Infecção Hospitalar/tratamento farmacológico , Infecções Comunitárias Adquiridas/tratamento farmacológico , Escherichia coli/genética , Fenótipo , Hospitais , Fígado , Testes de Sensibilidade Microbiana
3.
Int J Clin Pharmacol Ther ; 62(6): 259-266, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38529928

RESUMO

BACKGROUND: Vancomycin is being used for the treatment of a variety of infections caused by methicillin resistant Staphylococcus aureus and methicillin susceptible Staphylococcus aureus. Therapeutic drug monitoring (TDM) is highly recommended for ensuring the safe and effective therapy with vancomycin. A reliable and cost-effective bioanalytical method is required for TDM as well as pharmacokinetic studies of vancomycin. MATERIALS AND METHODS: A selective, sensitive, and cost effective HPLC method was developed and validated for quantification of vancomycin concentrations in human plasma. The mobile phase was a mixture of buffer (50 mM ammonium dihydrogen phosphate, pH 2.4) and acetonitrile 88 : 12 v/v. The separation was carried on C18 column (125 × 4.6 mm, particle size 5 µm) with isocratic flow rate of 0.370 mL/min at room temperature with UV detection at 215 nm. The method was validated for sensitivity, accuracy, and precision as well as stability of vancomycin in human plasma by following European Medicine Agency (EMA) guideline. Therapeutic drug monitoring of vancomycin was performed by quantifying the trough concentrations of vancomycin in 65 human plasma samples after administration of therapeutically relevant dose. RESULTS: The developed method was sensitive enough to quantify vancomycin concentrations as low as 0.25 mg/L in human plasma. Moreover, the method was proved accurate and precise in terms of quantifying the unknown concentration of vancomycin. The evaluation of short-term, long-term, and freeze-thaw stability proved the stability of vancomycin in human plasma. The TDM of vancomycin by using this method showed that 39 (60%) samples were within the target trough concentration range (TTCR), i.e. 10 - 20 mg/L, while 23 samples (35.4%) were below the TTCR, and 3 samples (4.6%) were above this range. CONCLUSION: The developed method is sensitive and cost effective for quantification of vancomycin in human plasma. The results of sample analysis shows that the developed method can be used reliably for TDM of vancomycin.


Assuntos
Antibacterianos , Monitoramento de Medicamentos , Vancomicina , Vancomicina/farmacocinética , Vancomicina/sangue , Humanos , Monitoramento de Medicamentos/métodos , Cromatografia Líquida de Alta Pressão/métodos , Antibacterianos/farmacocinética , Antibacterianos/sangue , Reprodutibilidade dos Testes
4.
Pak J Pharm Sci ; 37(1(Special)): 245-255, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38747276

RESUMO

Aripiprazole (ARI), an antipsychotic having low solubility and stability. To overcome this, formation of binary and ternary using inclusion complexes of Methyl-ß-cyclodextrin (MßCD) /Hydroxy propyl beta cyclodextrin (HPßCD) and L-Arginine (ARG)/ Lysine (LYS) are analyzed by dissolution testing and phase stability study along with their complexation efficacy and solubility constants made by physical mixing. Inclusion complexes with ARG were better than LYS and prepared by solvent evaporation and lyophilization method as well. They are characterized by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (AT-FTIR), X-ray powder diffractometry (XRD), Differential Scanning Calorimetry (DSC), Scanning electron microscopy (SEM) and Thermal gravimetric analysis (TGA). The bond shifting in AT-FTIR confirmed the molecular interactions between host and guest molecules. The SEM images also confirmed a complete change of drug morphology in case of ternary inclusion complexes prepared by lyophilization method for both the polymers. ARI: MßCD: ARG when used in the specific molar ratio of 1:1:0.27 by prepared by lyophilization method has 18 times best solubility while ARI:HPßCD:ARG was 7 times best solubility than pure drug making MßCD a better choice than HPßCD. Change in the molar ratio will cause loss of stability or solubility. Solvent evaporation gave significant level of solubility but less stability.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina , Arginina , Aripiprazol , Varredura Diferencial de Calorimetria , Lisina , Solubilidade , beta-Ciclodextrinas , Aripiprazol/química , Arginina/química , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina/química , Lisina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Liofilização , Antipsicóticos/química , Estabilidade de Medicamentos , Microscopia Eletrônica de Varredura , Composição de Medicamentos , Química Farmacêutica/métodos
5.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982742

RESUMO

Methamphetamine, a highly addictive central nervous system (CNS) stimulant, is used worldwide as an anorexiant and attention enhancer. Methamphetamine use during pregnancy, even at therapeutic doses, may harm fetal development. Here, we examined whether exposure to methamphetamine affects the morphogenesis and diversity of ventral midbrain dopaminergic neurons (VMDNs). The effects of methamphetamine on morphogenesis, viability, the release of mediator chemicals (such as ATP), and the expression of genes involved in neurogenesis were evaluated using VMDNs isolated from the embryos of timed-mated mice on embryonic day 12.5. We demonstrated that methamphetamine (10 µM; equivalent to its therapeutic dose) did not affect the viability and morphogenesis of VMDNs, but it reduced the ATP release negligibly. It significantly downregulated Lmx1a, En1, Pitx3, Th, Chl1, Dat, and Drd1 but did not affect Nurr1 or Bdnf expression. Our results illustrate that methamphetamine could impair VMDN differentiation by altering the expression of important neurogenesis-related genes. Overall, this study suggests that methamphetamine use may impair VMDNs in the fetus if taken during pregnancy. Therefore, it is essential to exercise strict caution for its use in expectant mothers.


Assuntos
Estimulantes do Sistema Nervoso Central , Metanfetamina , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Camundongos , Animais , Neurônios Dopaminérgicos/metabolismo , Metanfetamina/toxicidade , Metanfetamina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Mesencéfalo/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Trifosfato de Adenosina/metabolismo , Diferenciação Celular
6.
Molecules ; 28(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36677695

RESUMO

The widespread and indiscriminate use of broad-spectrum antibiotics leads to microbial resistance, which causes major problems in the treatment of infectious diseases. However, advances in nanotechnology have opened up new domains for the synthesis and use of nanoparticles against multidrug-resistant pathogens. The traditional approaches for nanoparticle synthesis are not only expensive, laborious, and hazardous but also have various limitations. Therefore, new biological approaches are being designed to synthesize economical and environmentally friendly nanoparticles with enhanced antimicrobial activity. The current study focuses on the isolation, identification, and screening of metallotolerant fungal strains for the production of silver nanoparticles, using antimicrobial activity analysis and the characterization of biologically synthesized silver nanoparticles by X-ray diffraction (XRD) spectroscopy, energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM). In total, 11 fungal isolates were isolated and screened for the synthesis of AgNPs, while the Penicillium notatum (K1) strain was found to be the most potent, demonstrating biosynthetic ability. The biologically synthesized silver nanoparticles showed excellent antibacterial activity against the bacteria Escherichia coli (ATCC10536), Bacillus subtilis, Staphylococcus aureus (ATCC9144), Pseudomonas aeruginosa (ATCC10145), Enterococcus faecalis, and Listeria innocua (ATCC13932). Furthermore, three major diffraction peaks in the XRD characterization, located at the 2θ values of 28.4, 34.8, 38.2, 44, 64, and 77°, confirmed the presence of AgNPs, while elemental composition analysis via EDX and spherical surface topology with a scanning electron microscope indicated that its pure crystalline nature was entirely composed of silver. Thus, the current study indicates the enhanced antibacterial capability of mycologically synthesized AgNPs, which could be used to counter multidrug-resistant pathogens.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/química , Bactérias , Espectrometria por Raios X , Desenvolvimento Muscular , Espectroscopia de Infravermelho com Transformada de Fourier , Extratos Vegetais/química
7.
Molecules ; 28(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677548

RESUMO

All nutrient-rich feed and food environments, as well as animal and human mucosae, include lactic acid bacteria known as Lactobacillus plantarum. This study reveals an advanced analysis to study the interaction of probiotics with the gastrointestinal environment, irritable bowel disease, and immune responses along with the analysis of the secondary metabolites' characteristics of Lp YW11. Whole genome sequencing of Lp YW11 revealed 2297 genes and 1078 functional categories of which 223 relate to carbohydrate metabolism, 21 against stress response, and the remaining 834 are involved in different cellular and metabolic pathways. Moreover, it was found that Lp YW11 consists of carbohydrate-active enzymes, which mainly contribute to 37 glycoside hydrolase and 28 glycosyltransferase enzyme coding genes. The probiotics obtained from the BACTIBASE database (streptin and Ruminococcin-A bacteriocins) were docked with virulent proteins (cdt, spvB, stxB, and ymt) of Salmonella, Shigella, Campylobacter, and Yersinia, respectively. These bacteria are the main pathogenic gut microbes that play a key role in causing various gastrointestinal diseases. The molecular docking, dynamics, and immune simulation analysis in this study predicted streptin and Ruminococcin-A as potent nutritive bacteriocins against gut symbiotic pathogens.


Assuntos
Bacteriocinas , Lactobacillus plantarum , Probióticos , Animais , Humanos , Simulação de Acoplamento Molecular , Bacteriocinas/genética , Bacteriocinas/farmacologia , Bacteriocinas/metabolismo , Bactérias/metabolismo , Probióticos/farmacologia , Lactobacillus plantarum/metabolismo
8.
J Hum Genet ; 67(7): 381-386, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35046476

RESUMO

Primary ciliary dyskinesia (PCD) is a clinically and genetically heterogeneous ciliopathy. Dysfunction of motile respiratory and nodal cilia results in sinopulmonary symptoms associated with laterality defects (LD) found in half of the patients. The molecular basis of the disease is insufficiently investigated in patients originating from the Arabian Peninsula. In a group of 16 unrelated Saudi patients clinically suspected of PCD and among whom only 5 (31%) had LD, we first screened by PCR-RFLP two founder mutations, RSPH9 c.804_806del and CCDC39 c.2190del previously identified in patients from the Arabian Peninsula and Tunisia, respectively. When negative, targeted panel or whole-exome sequencing was performed. Three patients were homozygous for the mutation in RSPH9, which encodes an axonemal protein that is absent from nodal cilia. None of the patients carried the CCDC39 founder mutation frequent in Tunisia. NGS analysis showed that nine patients had homozygous mutations in PCD genes. In total, sequential RFLP and NGS analysis solved 75% (12/16) of cases and identified ten distinct mutations, among which six are novel, in nine different genes. These results, which highlight the genetic heterogeneity of PCD in Saudi Arabia, show that the RSPH9 c.804_806del mutation is a prevalent mutation among Saudi patients, whereas the CCDC39 c.2190del ancestral allele is most likely related to the Berber population. This study shows that RSPH9 founder mutation first-line screening and NGS analysis is efficient for the genetic exploration of PCD in Saudi patients. The RSPH9 founder mutation accounts for the low rate of LD among Saudi patients.


Assuntos
Proteínas do Citoesqueleto , Síndrome de Kartagener , Proteínas do Citoesqueleto/genética , Efeito Fundador , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/genética , Mutação , Arábia Saudita
9.
Mediators Inflamm ; 2022: 3300903, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248189

RESUMO

Neurodegenerative disorders are marked by neuronal death over time, causing a variety of cognitive and motor dysfunctions. Protein misfolding, neuroinflammation, and mitochondrial and protein clearance system dysfunction have all been identified as common pathways leading to neurodegeneration in recent decades. An altered microbiome of the gut, which is considered to play a central role in diseases as well as health, has recently been identified as another potential feature seen in neurodegenerative disorders. An array of microbial molecules that are released in the digestive tract may mediate gut-brain connections and permeate many organ systems, including the nervous system. Furthermore, recent findings from clinical as well as preclinical trials suggest that the microbiota of the gut plays a critical part in gut-brain interplay and that a misbalance in the composition of the gut microbiome may be linked to the etiology of neurological disorders (majorly neurodegenerative health problems); the underlying mechanism of which is still unknown. The review aims to consider the association between the microbiota of the gut and neurodegenerative disorders, as well as to add to our understanding of the significance of the gut microbiome in neurodegeneration and the mechanisms that underlie it. Knowing the mechanisms behind the gut microbiome's role and abundance will provide us with new insights that could lead to novel therapeutic strategies.


Assuntos
Microbioma Gastrointestinal , Microbiota , Doenças Neurodegenerativas , Encéfalo , Microbioma Gastrointestinal/fisiologia , Humanos
10.
J Basic Microbiol ; 62(3-4): 444-454, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34870865

RESUMO

Microbial detoxification of cyanide offered an inexpensive, safe, and viable alternative to physiochemical processes for the treatment of cyanide in industrial effluents or contaminated sites. This study involved isolation of novel strain with high resistance against cyanide toxicity and able to degrade the cyanide radical. The strain was isolated from rocky area and identified as Sphingobacterium multivorium using 16S ribosomal RNA. Resting pregrown cells were used in simple reaction mixture to avoid the complication associated with the media. One-gram fresh weight of this bacteria was able to remove 98.5% from 1.5 g/L cyanide which is a unique result. Factor affecting the biochemical process such as pH, temperature, agitation, glucose concentration was examined. The optimum conditions were, pH 6-7, 30-40°C, and 100-150 rpm shaking speed and 0.25% glucose. Furthermore, the cells were used after immobilization in polytetrafluoroethylene (PTFE) polymer. The PTFE is very safe carrier and the cells withstand the entrapment process and were able to remove 92% (1 g/L cyanide). The immobilized cells were used for six successive cycles with about 50% removal efficiency. The storage life extended to 14 days. No previous work studied the cyanide removal by Sphingobacterium spp. The strain showed good applicable characters.


Assuntos
Sphingobacterium , Células Imobilizadas/metabolismo , Cianetos/metabolismo , Concentração de Íons de Hidrogênio , Filogenia , Politetrafluoretileno , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sphingobacterium/genética , Sphingobacterium/metabolismo
11.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36293205

RESUMO

The effects of second-generation antipsychotics on prenatal neurodevelopment, apoptotic neurodegeneration, and postnatal developmental delays have been poorly investigated. Even at standard doses, the use of quetiapine fumarate (QEPF) in pregnant women might be detrimental to fetal development. We used primary mouse embryonic neurons to evaluate the disruption of morphogenesis and differentiation of ventral midbrain (VM) neurons after exposure to QEPF. The dopaminergic VM neurons were deliberately targeted due to their roles in cognition, motor activity, and behavior. The results revealed that exposure to QEPF during early brain development decreased the effects of the dopaminergic lineage-related genes Tyrosine hydroxylase(Th), Dopamine receptor D1 (Drd1), Dopamine transporter (Dat), LIM homeobox transcription factor 1 alfa (Lmx1a), and Cell adhesion molecule L1 (Chl1), and the senescent dopaminergic gene Pituitary homeobox 3 (Pitx3). In contrast, Brain derived neurotrophic factor (Bdnf) and Nuclear receptor-related 1 (Nurr1) expressions were significantly upregulated. Interestingly, QEPF had variable effects on the development of non-dopaminergic neurons in VM. An optimal dose of QEPF (10 µM) was found to insignificantly affect the viability of neurons isolated from the VM. It also instigated a non-significant reduction in adenosine triphosphate formation in these neuronal populations. Exposure to QEPF during the early stages of brain development could also hinder the formation of VM and their structural phenotypes. These findings could aid therapeutic decision-making when prescribing 2nd generation antipsychotics in pregnant populations.


Assuntos
Molécula L1 de Adesão de Célula Nervosa , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Camundongos , Animais , Feminino , Humanos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Fumarato de Quetiapina/farmacologia , Fumarato de Quetiapina/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Mesencéfalo/metabolismo , Neurônios Dopaminérgicos/metabolismo , Fatores de Transcrição/metabolismo , Diferenciação Celular/genética , Trifosfato de Adenosina/metabolismo , Receptores Dopaminérgicos/metabolismo
12.
Molecules ; 27(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080230

RESUMO

This study aimed to investigate the antidepressant property of crocin (Crocetin digentiobiose ester) using a chronic mild stress (CMS)-induced depression model in experimental mice. The tail suspension test (TST) and the sucrose preference test were used to evaluate the antidepressant effect on albino mice of either sex after three weeks of CMS. The period of immobility in the TST and percentage preference for sucrose solution were recorded. By monitoring brain malondialdehyde (MDA) level, catalase (CAT) activity, and reduced glutathione (GSH) level, the antioxidant potential was assessed. Three dosages of crocin (4.84, 9.69, and 19.38 mg/kg) were evaluated. When compared to controls, animals that received crocin administration during three periods of CMS had considerably shorter immobility times during the TST. Crocin treatment also raised the percentage preference for sucrose solution in a dose-dependent manner, bringing it to parity with the conventional antidepressant, imipramine. Animals that received a high dose of crocin had a much greater spontaneous locomotor activity. Furthermore, a high dose of crocin remarkably lowered plasma corticosterone and nitrite levels brought on by CMS. Additionally, high doses of crocin given during CMS greatly enhanced reduced glutathione levels while considerably reducing the brain's MDA and catalase activities. In conclusion, high doses of crocin may have an antidepressant effect in an animal model through several mechanisms. However, further studies should be carried out to explore the role of neurotransmitters for their antidepressant property.


Assuntos
Antidepressivos , Depressão , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antioxidantes/farmacologia , Comportamento Animal , Carotenoides , Catalase/farmacologia , Depressão/tratamento farmacológico , Depressão/etiologia , Modelos Animais de Doenças , Glutationa/farmacologia , Camundongos , Estresse Psicológico/tratamento farmacológico , Sacarose/farmacologia
13.
Molecules ; 27(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36144618

RESUMO

Poor mood, lack of pleasure, reduced focus, remorse, unpleasant thoughts, and sleep difficulties are all symptoms of depression. The only approved treatment for children and adolescents with major depressive disorder (MDD) is fluoxetine hydrochloride (FXN), a serotonin selective reuptake inhibitor antidepressant. MDD is the most common cause of disability worldwide. In the present research, picric acid (PA); dinitrobenzene; p-nitro benzoic acid; 2,6-dichloroquinone-4-chloroimide; 2,6-dibromoquinone-4-chloroimide; and 7,7',8,8'-tetracyanoquinodimethane were used to make 1:1 FXN charge-transfer compounds in solid and liquid forms. The isolated complexes were then characterized by elemental analysis, conductivity, infrared, Raman, and 1H-NMR spectra, thermogravimetric analysis, scanning electron microscopy, and X-ray powder diffraction. Additionally, a molecular docking investigation was conducted on the donor moiety using FXN alone and the resulting charge transfer complex [(FXN)(PA)] as an acceptor to examine the interactions against two protein receptors (serotonin or dopamine). Interestingly, the [(FXN)(PA)] complex binds to both serotonin and dopamine more effectively than the FXN drug alone. Furthermore, [(FXN)(PA)]-serotonin had a greater binding energy than [FXN]-serotonin. Theoretical data were also generated by density functional theory simulations, which aided the molecular geometry investigation and could be beneficial to researchers in the future.


Assuntos
Transtorno Depressivo Maior , Fluoxetina , Adolescente , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Ácido Benzoico , Criança , Transtorno Depressivo Maior/tratamento farmacológico , Dinitrobenzenos , Dopamina/metabolismo , Fluoxetina/farmacologia , Humanos , Simulação de Acoplamento Molecular , Picratos , Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
14.
Molecules ; 27(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36144820

RESUMO

Twenty-four analogues of benzimidazole-based thiazoles (1-24) were synthesized and assessed for their in vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory potential. All analogues were found to exhibit good inhibitory potential against cholinesterase enzymes, having IC50 values in the ranges of 0.10 ± 0.05 to 11.10 ± 0.30 µM (for AChE) and 0.20 ± 0.050 µM to 14.20 ± 0.10 µM (for BuChE) as compared to the standard drug Donepezil (IC50 = 2.16 ± 0.12 and 4.5 ± 0.11 µM, respectively). Among the series, analogues 16 and 21 were found to be the most potent inhibitors of AChE and BuChE enzymes. The number (s), types, electron-donating or -withdrawing effects and position of the substituent(s) on the both phenyl rings B & C were the primary determinants of the structure-activity relationship (SAR). In order to understand how the most active derivatives interact with the amino acids in the active site of the enzyme, molecular docking studies were conducted. The results obtained supported the experimental data. Additionally, the structures of all newly synthesized compounds were elucidated by using several spectroscopic methods like 13C-NMR, 1H-NMR and HR EIMS.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Aminoácidos , Benzimidazóis/química , Butirilcolinesterase/química , Inibidores da Colinesterase/química , Donepezila , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tiazóis/farmacologia
15.
Molecules ; 27(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35807432

RESUMO

Parthenium hysterophorus L. is a poisonous Asteraceae weed. The phytochemical profile, antioxidant activity, total phenolic contents (TPC), total flavonoid contents (TFC), and cytotoxicity of Parthenium hysterophorus L. flower extract were evaluated in this study, and the toxic effects were assessed in rabbits. The HPLC-DAD system was used for phytochemical analysis. The hemolytic and DPPH assays were performed. The effects of orally administering the flower crude extract to rabbits (n = 5) at four different doses (10, 20, 40, and 80 mg/kg) for ten days on hematological and biochemical parameters were investigated. The crude extract of the flower contained phenolic compounds such as Gallic acid, Chlorogenic acid, Ellagic acid, and P Coumaric acid, which were detected at different retention times, according to the HPLC results. With a sample peak of 4667.475 %, chlorogenic acid was abundant. At concentrations of 80 µg, the methanolic extract of flowers had total phenolic contents (89.364 ± 4.715 g GAE/g) and total flavonoid contents (65.022 ± 2.694 g QE/g). In the DPPH free radical scavenging assay, 80 µg of extract had the highest cell inhibition of 76.90% with an IC50 value of 54.278 µg/µL, while in the hemolytic assay 200 µg of extract had the highest cell inhibition of 76.90% with an IC50 > 500. The biochemical and hematological parameters were altered in the flower extract-fed groups as compared to the control (p < 0.05). The toxic effects on the blood, liver, and kidneys were confirmed. The findings also confirmed the presence of phenolic and flavonoid content in the flower extract, both of which contribute to the plant's antioxidant potential.


Assuntos
Antioxidantes , Asteraceae , Animais , Antioxidantes/química , Asteraceae/química , Flavonoides/análise , Flavonoides/farmacologia , Fenóis/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Coelhos
16.
Molecules ; 27(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35807470

RESUMO

In this study, the antibacterial and antifungal properties of silver nanoparticles synthesized with the aqueous plant extract of Acer oblongifolium leaves were defined using a simplistic, environmentally friendly, reliable, and cost-effective method. The aqueous plant extract of Acer oblongifolium, which served as a capping and reducing agent, was used to biosynthesize silver nanoparticles. UV visible spectroscopy, X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and scanning electron microscopy were used to analyze the biosynthesized Acer oblongifolium silver nanoparticles (AgNPs). Gram-positive bacteria (Bacillus paramycoides and Bacillus cereus) and Gram-negative bacteria (E. coli) were used to test the AgNPs' antibacterial activity. The presence of different functional groups was determined by FTIR. The AgNPs were rod-like in shape. The nanoparticles were more toxic against Escherichiacoli than both Bacillus cereus and Bacillus paramycoides. The AgNPs had IC50 values of 6.22 and 9.43 and mg/mL on HeLa and MCF-7, respectively, proving their comparatively strong potency against MCF-7. This confirmed that silver nanoparticles had strong antibacterial activity and antiproliferative ability against MCF-7 and HeLa cell lines. The mathematical modeling revealed that the pure nanoparticle had a high heat-absorbing capacity compared to the mixed nanoparticle. This research demonstrated that the biosynthesized Acer oblongifolium AgNPs could be used as an antioxidant, antibacterial, and anticancer agent in the future.


Assuntos
Acer , Bacillus , Nanopartículas Metálicas , Antibacterianos , Escherichia coli , Células HeLa , Humanos , Nanopartículas Metálicas/química , Extratos Vegetais/química , Folhas de Planta/química , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
17.
Molecules ; 27(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36144579

RESUMO

In this research, a new biodegradable and eco-friendly adsorbent, starch-grafted polymethyl methacrylate (St-g-PMMA) was synthesized. The St-g-PMMA was synthesized by a free radical polymerization reaction in which methyl methacrylate (MMA) was grafted onto a starch polymer chain. The reaction was performed in water in the presence of a potassium persulfate (KPS) initiator. The structure and different properties of the St-g-PMMA was explored by FT-IR, 1H NMR, TGA, SEM and XRD. After characterization, the St-g-PMMA was used for the removal of MB dye. Different adsorption parameters, such as effect of adsorbent dose, effect of pH, effect of initial concentration of dye solution, effect of contact time and comparative adsorption study were investigated. The St-g-PMMA showed a maximum removal percentage (R%) of 97% towards MB. The other parameters, such as the isothermal and kinetic models, were fitted to the experimental data. The results showed that the Langmuir adsorption and pseudo second order kinetic models were best fitted to experimental data with a regression coefficient of R2 = 0.93 and 0.99, respectively.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Adsorção , Radicais Livres , Gentamicinas , Concentração de Íons de Hidrogênio , Cinética , Metacrilatos , Metilmetacrilatos , Polimerização , Polimetil Metacrilato , Espectroscopia de Infravermelho com Transformada de Fourier , Amido/química , Água , Poluentes Químicos da Água/química
18.
Molecules ; 27(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36080167

RESUMO

The important role of Lactiplantibacillus plantarum strains in improving the human mucosal and systemic immunity, preventing non-steroidal anti-provocative drug-induced reduction in T-regulatory cells, and as probiotic starter cultures in food processing has motivated in-depth molecular and genomic research of these strains. The current study, building on this research concept, reveals the importance of Lactiplantibacillus plantarum 13-3 as a potential probiotic and bacteriocin-producing strain that helps in improving the condition of the human digestive system and thus enhances the immunity of the living beings via various extracellular proteins and exopolysaccharides. We have assessed the stability and quality of the L. plantarum 13-3 genome through de novo assembly and annotation through FAST-QC and RAST, respectively. The probiotic-producing components, secondary metabolites, phage prediction sites, pathogenicity and carbohydrate-producing enzymes in the genome of L. plantarum 13-3 have also been analyzed computationally. This study reveals that L. plantarum 13-3 is nonpathogenic with 218 subsystems and 32,918 qualities and five classes of sugars with several important functions. Two phage hit sites have been identified in the strain. Cyclic lactone autoinducer, terpenes, T3PKS, and RiPP-like gene clusters have also been identified in the strain evidencing its role in food processing. Combined, the non-pathogenicity and the food-processing ability of this strain have rendered this strain industrially important. The subsystem and qualities characterization provides a starting point to investigate the strain's healthcare-related applications as well.


Assuntos
Bacteriocinas , Lactobacillus plantarum , Probióticos , Bacteriocinas/metabolismo , Microbiologia de Alimentos , Inocuidade dos Alimentos , Humanos , Lactobacillus plantarum/metabolismo , Probióticos/metabolismo
19.
Molecules ; 27(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36234675

RESUMO

Cardiovascular diseases are one of the major causes of mortalities worldwide. In the present research, new synthetic derivatives of thiazole were studied using isolated hearts and blood vessels of rats. The heart and thoracic aorta were tested with six new synthesized thiazole acetic acid derivatives (SMVA-10, SMVA-35, SMVA-40, SMVA-41, SMVA-42 and SMVA-60), and the data obtained were statistically analyzed and compared. Isolated rat hearts were used to record the changes in developed tension and heart rate, while thoracic aortas were used to measure the contractile response, before and after treatments. Analysis of the results indicated a significant (p < 0.01) increase in developed tension with the addition of SMVA-35, SMVA-40, SMVA-41 and SMVA-42, which was augmented in the presence of adrenaline without affecting the heart rate. On the other hand, acetylcholine significantly decreased the developed tension, which was significantly reversed (p < 0.01) in the presence of compounds (SMVA-35 and SMVA-60). However, in the presence of SMVA-35 and SMVA-40, acetylcholine-induced bradycardia was significantly (p < 0.01) reduced. Furthermore, only SMVA-42 induced a dose-dependent contractile response in the isolated blood vessel, which was abolished in the presence of prazosin. Therefore, it can be concluded that some of the new synthesized thiazole derivatives exhibited promising results by raising the developed tension without changing the heart rate or blood vessel function, which could be helpful in failing heart conditions. However, more research is required to fully comprehend the function, mechanism and effectiveness of the compounds.


Assuntos
Ácido Acético , Tiazóis , Acetilcolina , Animais , Epinefrina , Prazosina , Ratos , Tiazóis/farmacologia
20.
Molecules ; 27(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35630766

RESUMO

The charge transfer interactions between the seproxetine (SRX) donor and π-electron acceptors [picric acid (PA), dinitrobenzene (DNB), p-nitrobenzoic acid (p-NBA), 2,6-dichloroquinone-4-chloroimide (DCQ), 2,6-dibromoquinone-4-chloroimide (DBQ), and 7,7',8,8'-tetracyanoquinodi methane (TCNQ)] were studied in a liquid medium, and the solid form was isolated and characterized. The spectrophotometric analysis confirmed that the charge-transfer interactions between the electrons of the donor and acceptors were 1:1 (SRX: π-acceptor). To study the comparative interactions between SRX and the other π-electron acceptors, molecular docking calculations were performed between SRX and the charge transfer (CT) complexes against three receptors (serotonin, dopamine, and TrkB kinase receptor). According to molecular docking, the CT complex [(SRX)(TCNQ)] binds with all three receptors more efficiently than SRX alone, and [(SRX)(TCNQ)]-dopamine (CTcD) has the highest binding energy value. The results of AutoDock Vina revealed that the molecular dynamics simulation of the 100 ns run revealed that both the SRX-dopamine and CTcD complexes had a stable conformation; however, the CTcD complex was more stable. The optimized structure of the CT complexes was obtained using density functional theory (B-3LYP/6-311G++) and was compared.


Assuntos
Antidepressivos , Dopamina , Antidepressivos/farmacologia , Elétrons , Simulação de Acoplamento Molecular , Espectrofotometria/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA